Item talk:Q139674: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5069311586", "orcid": "https://orcid.org/0000-0003-1996-8639", "display_name": "Manuel Helbig", "display_name_alternatives": [ "Manuel Helbig", "M. Helbig" ], "works_count": 140, "cited_by_count": 2810, "summary_stats": { "2yr_mean_citedness": 5.7727272727272725, "h_index": 26, "i10_index": 37 }, "ids": { "openalex": "https://openalex.org/A5069311586...") |
No edit summary |
||
Line 781: | Line 781: | ||
"id": "https://openalex.org/T10779", | "id": "https://openalex.org/T10779", | ||
"display_name": "Importance of Mangrove Ecosystems in Coastal Protection", | "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", | ||
"value": 5e-05, | "value": "5e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2303", | "id": "https://openalex.org/subfields/2303", | ||
Line 1,316: | Line 1,316: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5069311586" | "_id": "https://openalex.org/A5069311586" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0003-1996-8639", | |||
"mainEntityOfPage": "https://orcid.org/0000-0003-1996-8639", | |||
"givenName": "Manuel", | |||
"familyName": "Helbig", | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences", | |||
"alternateName": "Remote Sensing an Geoinformatics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/04z8jg394" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "grid.55602.34", | |||
"name": "Dalhousie University", | |||
"alternateName": "Physics and Atmospheric Science" | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "McGill University", | |||
"alternateName": "Natural Resource Science", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "5620" | |||
} | |||
} | |||
], | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.22541/essoar.171707810.00580408/v1", | |||
"name": "Boreal Forest Fire Causes Daytime Surface Warming During Summer to Exceed Surface Cooling During Winter in North America", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.22541/essoar.171707810.00580408/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2023.109872", | |||
"name": "AFM Special Issue Summary - Integrating Surface Flux with Boundary Layer Measurements", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2023.109872" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.16748", | |||
"name": "Climate\u2010driven spatial and temporal patterns in peatland pool biogeochemistry", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.16748" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022jg006923", | |||
"name": "Reduced Net CO2 Uptake During Dry Summers in a Boreal Shield Peatland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022jg006923" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-022-01428-z", | |||
"name": "Warming response of peatland CO2 sink is sensitive to seasonality in warming trends", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-022-01428-z" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021jg006707", | |||
"name": "Advancing Cross\u2010Disciplinary Understanding of Land\u2010Atmosphere Interactions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021jg006707" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021jg006481", | |||
"name": "Seasonal and Spatial Variability of Biological N2 Fixation in a Cool Temperate Bog", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021jg006481" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2021.108509", | |||
"name": "Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2021.108509" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85108375502" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2021.108350", | |||
"name": "Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2021.108350" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85100750901" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-021-22452-1", | |||
"name": "Substantial hysteresis in emergent temperature sensitivity of global wetland CH<inf>4</inf> emissions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85104390097" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-021-22452-1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/abab34", | |||
"name": "The biophysical climate mitigation potential of boreal peatlands during the growing season", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/abab34" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85094183844" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-020-0763-7", | |||
"name": "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-020-0763-7" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85084517478" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-8991", | |||
"name": "Lateral carbon export from polygonal tundra catchments on Samoylov Island, Lena River Delta", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-8991" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.14863", | |||
"name": "Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.14863" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85074762067" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2019jg005090", | |||
"name": "Contrasting Temperature Sensitivity of CO2 Exchange in Peatlands of the Hudson Bay Lowlands, Canada", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2019jg005090" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85069930881" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-019-0644-0", | |||
"name": "Author Correction: Large loss of CO<inf>2</inf> in winter observed across the northern permafrost region (Nature Climate Change, (2019), 9, 11, (852-857), 10.1038/s41558-019-0592-8)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85075030533" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-019-0644-0" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2019.04.005", | |||
"name": "Does direct-seeded rice decrease ecosystem-scale methane emissions?\u2014A case study from a rice paddy in southeast China", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2019.04.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85064241380" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/bams-d-18-0268.1", | |||
"name": "FluXNET-CH<inf>4</inf> synthesis activity objectives, observations, and future directions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/bams-d-18-0268.1" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071603836" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.fbp.2018.11.005", | |||
"name": "Laboratory methods to predict the cleaning behaviour of egg yolk layers in a flow channel", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.fbp.2018.11.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85057959477" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-019-0592-8", | |||
"name": "Large loss of CO<inf>2</inf> in winter observed across the northern permafrost region", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85074223265" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-019-0592-8" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.13546", | |||
"name": "Modelling the effects of permafrost loss on discharge from a wetland-dominated, discontinuous permafrost basin", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071172029" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.13546" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/essd-11-1263-2019", | |||
"name": "Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071527458" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/essd-11-1263-2019" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eco.1975", | |||
"name": "Minor contribution of overstorey transpiration to landscape evapotranspiration in boreal permafrost peatlands", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eco.1975" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85045195021" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/aa8c85", | |||
"name": "Warmer spring conditions increase annual methane emissions from a boreal peat landscape with sporadic permafrost", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/aa8c85" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85036467168" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.13638", | |||
"name": "Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest\u2013wetland landscape", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85013997063" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13638" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/cite.201600105", | |||
"name": "Increasing the Cleaning Efficiency of the Cleaning-in-Place Method by Applying Discontinuous Liquid Jets,Erh\u00f6hung der Reinigungseffizienz bei der Cleaning-in-Place-Reinigung durch diskontinuierliche Fl\u00fcssigkeitsstrahlen", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85021841019" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/cite.201600105" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.13520", | |||
"name": "The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13520" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84997693750" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2016.07.018", | |||
"name": "Addressing a systematic bias in carbon dioxide flux measurements with the EC150 and the IRGASON open-path gas analyzers", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84982733834" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2016.07.018" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2015gl067193", | |||
"name": "Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84959199192" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2015gl067193" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.13348", | |||
"name": "Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84973560748" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13348" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bgd-12-10719-2015", | |||
"name": "Reviews and Syntheses: Effects of permafrost thaw on arctic aquatic ecosystems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85000968288" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bgd-12-10719-2015" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-12-7129-2015", | |||
"name": "Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949604722" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-12-7129-2015" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.fbp.2013.07.010", | |||
"name": "A comparison of local phosphorescence detection and fluid dynamic gauging methods for studying the removal of cohesive fouling layers: Effect of layer roughness", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.fbp.2013.07.010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84892365608" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/joc.3731", | |||
"name": "Hydroclimatic assessment of water resources of low Pacific islands: Evaluating sensitivity to climatic change and variability", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/joc.3731" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84896701592" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10040-012-0933-4", | |||
"name": "Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia),Variabilit\u00e9 saisonni\u00e8re et spatiale du bilan d'eau de la toundra polygonale: Delta de la rivi\u00e8re Lena, Nord Sib\u00e9rien (Russie)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10040-012-0933-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84873516292" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.fbp.2012.06.005", | |||
"name": "Local analysis of cleaning mechanisms in CIP processes", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.fbp.2012.06.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84867514868" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1127/0941-2948/2011/0261", | |||
"name": "Derivation of a climatic dataset for water balance modelling of Pacific atolls", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84555218918" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1127/0941-2948/2011/0261" | |||
} | |||
] | |||
} | |||
] | |||
}, | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "54795025900" | |||
} | |||
} | } | ||
} | } |
Latest revision as of 20:23, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5069311586", "orcid": "https://orcid.org/0000-0003-1996-8639", "display_name": "Manuel Helbig", "display_name_alternatives": [ "Manuel Helbig", "M. Helbig" ], "works_count": 140, "cited_by_count": 2810, "summary_stats": { "2yr_mean_citedness": 5.7727272727272725, "h_index": 26, "i10_index": 37 }, "ids": { "openalex": "https://openalex.org/A5069311586", "orcid": "https://orcid.org/0000-0003-1996-8639", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=54795025900&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I129902397", "ror": "https://ror.org/01e6qks80", "display_name": "Dalhousie University", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I129902397" ] }, "years": [ 2024, 2023, 2022, 2021, 2020 ] }, { "institution": { "id": "https://openalex.org/I70931966", "ror": "https://ror.org/0161xgx34", "display_name": "Universit\u00e9 de Montr\u00e9al", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I70931966" ] }, "years": [ 2024, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014 ] }, { "institution": { "id": "https://openalex.org/I4210152878", "ror": "https://ror.org/04z8jg394", "display_name": "Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences", "country_code": "DE", "type": "facility", "lineage": [ "https://openalex.org/I1305996414", "https://openalex.org/I4210152878" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I4210162928", "ror": "https://ror.org/05b7rex33", "display_name": "\u014ctani University", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I4210162928" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I159176309", "ror": "https://ror.org/00g30e956", "display_name": "Universit\u00e4t Hamburg", "country_code": "DE", "type": "education", "lineage": [ "https://openalex.org/I159176309" ] }, "years": [ 2022, 2013 ] }, { "institution": { "id": "https://openalex.org/I4210165559", "ror": "https://ror.org/05nj8ma95", "display_name": "Institute of Soil Science", "country_code": "CN", "type": "facility", "lineage": [ "https://openalex.org/I19820366", "https://openalex.org/I4210165559" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I98251732", "ror": "https://ror.org/02fa3aq29", "display_name": "McMaster University", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I98251732" ] }, "years": [ 2021, 2020, 2019 ] }, { "institution": { "id": "https://openalex.org/I4210110488", "ror": "https://ror.org/01q8ytn75", "display_name": "Center for Northern Studies", "country_code": "CA", "type": "facility", "lineage": [ "https://openalex.org/I182451676", "https://openalex.org/I4210110488", "https://openalex.org/I43406934", "https://openalex.org/I49663120" ] }, "years": [ 2021, 2020, 2019, 2018, 2017, 2016 ] }, { "institution": { "id": "https://openalex.org/I78650965", "ror": "https://ror.org/042aqky30", "display_name": "TU Dresden", "country_code": "DE", "type": "education", "lineage": [ "https://openalex.org/I78650965" ] }, "years": [ 2019, 2017, 2014, 2012 ] }, { "institution": { "id": "https://openalex.org/I5023651", "ror": "https://ror.org/01pxwe438", "display_name": "McGill University", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I5023651" ] }, "years": [ 2019, 2017 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I129902397", "ror": "https://ror.org/01e6qks80", "display_name": "Dalhousie University", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I129902397" ] } ], "topics": [ { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 64, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 47, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 46, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 38, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12618", "display_name": "Diversity and Conservation of Vascular Plants in Central Europe", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10399", "display_name": "Characterization of Shale Gas Pore Structure", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2211", "display_name": "Mechanics of Materials" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10313", "display_name": "Superhydrophobic Surface Technology", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2508", "display_name": "Surfaces, Coatings and Films" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14177", "display_name": "Environmental Impact on Lake Baikal Ecosystem", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11278", "display_name": "Bioinspired Structural Materials and Biomineralization", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2502", "display_name": "Biomaterials" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10864", "display_name": "Bioreactor Scale-up and Oxygen Transfer in Microbial Processes", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2204", "display_name": "Biomedical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12682", "display_name": "Impact of Road Salt on Freshwater Salinization", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2310", "display_name": "Pollution" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12776", "display_name": "Electrohydrodynamic Jet Printing and Nanoparticle Encapsulation", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10004", "display_name": "Soil Carbon Dynamics and Nutrient Cycling in Ecosystems", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 0.0003866, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.0003795, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 0.000149, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 0.0001351, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13530", "display_name": "Climate Change and Environmental Impact", "value": 9.24e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14177", "display_name": "Environmental Impact on Lake Baikal Ecosystem", "value": 7.78e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 7.47e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "value": 5.03e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "value": "5e-05", "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "value": 4.6e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 4.14e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "value": 3.45e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11278", "display_name": "Bioinspired Structural Materials and Biomineralization", "value": 3.03e-05, "subfield": { "id": "https://openalex.org/subfields/2502", "display_name": "Biomaterials" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14329", "display_name": "Climate Change and Environmental Science", "value": 3.01e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 2.59e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "value": 2.51e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10864", "display_name": "Bioreactor Scale-up and Oxygen Transfer in Microbial Processes", "value": 2.21e-05, "subfield": { "id": "https://openalex.org/subfields/2204", "display_name": "Biomedical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10313", "display_name": "Superhydrophobic Surface Technology", "value": 2.18e-05, "subfield": { "id": "https://openalex.org/subfields/2508", "display_name": "Surfaces, Coatings and Films" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12085", "display_name": "Collagen Structure and Applications", "value": 1.99e-05, "subfield": { "id": "https://openalex.org/subfields/2502", "display_name": "Biomaterials" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12077", "display_name": "Physics of Vacuum Arcs and Thermal Plasmas", "value": 1.78e-05, "subfield": { "id": "https://openalex.org/subfields/3107", "display_name": "Atomic and Molecular Physics, and Optics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12048", "display_name": "Applications of Microencapsulation in Food Industry", "value": 1.77e-05, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "value": 1.76e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12682", "display_name": "Impact of Road Salt on Freshwater Salinization", "value": 1.73e-05, "subfield": { "id": "https://openalex.org/subfields/2310", "display_name": "Pollution" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12692", "display_name": "Magnetic Sensor Technology and Applications", "value": 1.64e-05, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12656", "display_name": "Impact of Climate Change on Human Migration", "value": 1.61e-05, "subfield": { "id": "https://openalex.org/subfields/3312", "display_name": "Sociology and Political Science" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 93.6 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 90.7 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 90.0 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 89.3 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 84.3 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 72.9 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 61.4 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 60.0 }, { "id": "https://openalex.org/C91586092", "wikidata": "https://www.wikidata.org/wiki/Q757520", "display_name": "Atmospheric sciences", "level": 1, "score": 52.9 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 52.9 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 52.1 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 52.1 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 48.6 }, { "id": "https://openalex.org/C49204034", "wikidata": "https://www.wikidata.org/wiki/Q52139", "display_name": "Climatology", "level": 1, "score": 42.9 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 42.9 }, { "id": "https://openalex.org/C35187779", "wikidata": "https://www.wikidata.org/wiki/Q5336709", "display_name": "Eddy covariance", "level": 3, "score": 40.0 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 38.6 }, { "id": "https://openalex.org/C100537666", "wikidata": "https://www.wikidata.org/wiki/Q893477", "display_name": "Boreal", "level": 2, "score": 34.3 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 32.9 }, { "id": "https://openalex.org/C100970517", "wikidata": "https://www.wikidata.org/wiki/Q52107", "display_name": "Physical geography", "level": 1, "score": 32.1 }, { "id": "https://openalex.org/C15098985", "wikidata": "https://www.wikidata.org/wiki/Q179918", "display_name": "Permafrost", "level": 2, "score": 31.4 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 31.4 }, { "id": "https://openalex.org/C97137747", "wikidata": "https://www.wikidata.org/wiki/Q38112", "display_name": "Forestry", "level": 1, "score": 30.0 }, { "id": "https://openalex.org/C518008717", "wikidata": "https://www.wikidata.org/wiki/Q25322", "display_name": "Arctic", "level": 2, "score": 29.3 }, { "id": "https://openalex.org/C87621631", "wikidata": "https://www.wikidata.org/wiki/Q69564", "display_name": "Taiga", "level": 2, "score": 28.6 } ], "counts_by_year": [ { "year": 2024, "works_count": 5, "cited_by_count": 591 }, { "year": 2023, "works_count": 10, "cited_by_count": 793 }, { "year": 2022, "works_count": 18, "cited_by_count": 726 }, { "year": 2021, "works_count": 26, "cited_by_count": 665 }, { "year": 2020, "works_count": 15, "cited_by_count": 328 }, { "year": 2019, "works_count": 17, "cited_by_count": 205 }, { "year": 2018, "works_count": 6, "cited_by_count": 109 }, { "year": 2017, "works_count": 10, "cited_by_count": 85 }, { "year": 2016, "works_count": 8, "cited_by_count": 66 }, { "year": 2015, "works_count": 7, "cited_by_count": 25 }, { "year": 2014, "works_count": 6, "cited_by_count": 10 }, { "year": 2013, "works_count": 10, "cited_by_count": 17 }, { "year": 2012, "works_count": 1, "cited_by_count": 7 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5069311586", "updated_date": "2024-08-22T08:18:50.853072", "created_date": "2023-07-21", "_id": "https://openalex.org/A5069311586" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0003-1996-8639", "mainEntityOfPage": "https://orcid.org/0000-0003-1996-8639", "givenName": "Manuel", "familyName": "Helbig", "affiliation": [ { "@type": "Organization", "name": "Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences", "alternateName": "Remote Sensing an Geoinformatics", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/04z8jg394" } }, { "@type": "Organization", "@id": "grid.55602.34", "name": "Dalhousie University", "alternateName": "Physics and Atmospheric Science" }, { "@type": "Organization", "name": "McGill University", "alternateName": "Natural Resource Science", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "5620" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.22541/essoar.171707810.00580408/v1", "name": "Boreal Forest Fire Causes Daytime Surface Warming During Summer to Exceed Surface Cooling During Winter in North America", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/essoar.171707810.00580408/v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2023.109872", "name": "AFM Special Issue Summary - Integrating Surface Flux with Boundary Layer Measurements", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2023.109872" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16748", "name": "Climate\u2010driven spatial and temporal patterns in peatland pool biogeochemistry", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16748" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022jg006923", "name": "Reduced Net CO2 Uptake During Dry Summers in a Boreal Shield Peatland", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jg006923" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-022-01428-z", "name": "Warming response of peatland CO2 sink is sensitive to seasonality in warming trends", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-022-01428-z" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021jg006707", "name": "Advancing Cross\u2010Disciplinary Understanding of Land\u2010Atmosphere Interactions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021jg006707" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021jg006481", "name": "Seasonal and Spatial Variability of Biological N2 Fixation in a Cool Temperate Bog", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021jg006481" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2021.108509", "name": "Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2021.108509" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85108375502" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2021.108350", "name": "Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2021.108350" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85100750901" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-021-22452-1", "name": "Substantial hysteresis in emergent temperature sensitivity of global wetland CH<inf>4</inf> emissions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85104390097" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-021-22452-1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/abab34", "name": "The biophysical climate mitigation potential of boreal peatlands during the growing season", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/abab34" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85094183844" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-020-0763-7", "name": "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-020-0763-7" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85084517478" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu2020-8991", "name": "Lateral carbon export from polygonal tundra catchments on Samoylov Island, Lena River Delta", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu2020-8991" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14863", "name": "Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14863" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074762067" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019jg005090", "name": "Contrasting Temperature Sensitivity of CO2 Exchange in Peatlands of the Hudson Bay Lowlands, Canada", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019jg005090" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85069930881" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-019-0644-0", "name": "Author Correction: Large loss of CO<inf>2</inf> in winter observed across the northern permafrost region (Nature Climate Change, (2019), 9, 11, (852-857), 10.1038/s41558-019-0592-8)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075030533" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-019-0644-0" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2019.04.005", "name": "Does direct-seeded rice decrease ecosystem-scale methane emissions?\u2014A case study from a rice paddy in southeast China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2019.04.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064241380" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/bams-d-18-0268.1", "name": "FluXNET-CH<inf>4</inf> synthesis activity objectives, observations, and future directions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/bams-d-18-0268.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071603836" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.fbp.2018.11.005", "name": "Laboratory methods to predict the cleaning behaviour of egg yolk layers in a flow channel", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.fbp.2018.11.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85057959477" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-019-0592-8", "name": "Large loss of CO<inf>2</inf> in winter observed across the northern permafrost region", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074223265" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-019-0592-8" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.13546", "name": "Modelling the effects of permafrost loss on discharge from a wetland-dominated, discontinuous permafrost basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071172029" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.13546" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-11-1263-2019", "name": "Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071527458" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-11-1263-2019" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eco.1975", "name": "Minor contribution of overstorey transpiration to landscape evapotranspiration in boreal permafrost peatlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eco.1975" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85045195021" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aa8c85", "name": "Warmer spring conditions increase annual methane emissions from a boreal peat landscape with sporadic permafrost", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aa8c85" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85036467168" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13638", "name": "Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest\u2013wetland landscape", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85013997063" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13638" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/cite.201600105", "name": "Increasing the Cleaning Efficiency of the Cleaning-in-Place Method by Applying Discontinuous Liquid Jets,Erh\u00f6hung der Reinigungseffizienz bei der Cleaning-in-Place-Reinigung durch diskontinuierliche Fl\u00fcssigkeitsstrahlen", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021841019" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/cite.201600105" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13520", "name": "The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13520" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84997693750" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2016.07.018", "name": "Addressing a systematic bias in carbon dioxide flux measurements with the EC150 and the IRGASON open-path gas analyzers", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84982733834" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2016.07.018" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2015gl067193", "name": "Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959199192" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015gl067193" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13348", "name": "Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84973560748" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13348" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bgd-12-10719-2015", "name": "Reviews and Syntheses: Effects of permafrost thaw on arctic aquatic ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85000968288" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bgd-12-10719-2015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-12-7129-2015", "name": "Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949604722" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-12-7129-2015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.fbp.2013.07.010", "name": "A comparison of local phosphorescence detection and fluid dynamic gauging methods for studying the removal of cohesive fouling layers: Effect of layer roughness", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.fbp.2013.07.010" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84892365608" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/joc.3731", "name": "Hydroclimatic assessment of water resources of low Pacific islands: Evaluating sensitivity to climatic change and variability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/joc.3731" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84896701592" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10040-012-0933-4", "name": "Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia),Variabilit\u00e9 saisonni\u00e8re et spatiale du bilan d'eau de la toundra polygonale: Delta de la rivi\u00e8re Lena, Nord Sib\u00e9rien (Russie)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10040-012-0933-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873516292" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.fbp.2012.06.005", "name": "Local analysis of cleaning mechanisms in CIP processes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.fbp.2012.06.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84867514868" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1127/0941-2948/2011/0261", "name": "Derivation of a climatic dataset for water balance modelling of Pacific atolls", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84555218918" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1127/0941-2948/2011/0261" } ] } ] }, "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "54795025900" } }
}