Item talk:Q139245: Difference between revisions
From geokb
No edit summary |
No edit summary |
||
Line 983: | Line 983: | ||
"id": "https://openalex.org/T10194", | "id": "https://openalex.org/T10194", | ||
"display_name": "Fractional Laplacian Operators", | "display_name": "Fractional Laplacian Operators", | ||
"value": 9e-06, | "value": "9e-06", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2604", | "id": "https://openalex.org/subfields/2604", | ||
Line 1,246: | Line 1,246: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5042214194" | "_id": "https://openalex.org/A5042214194" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-6058-5472", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-6058-5472", | |||
"givenName": "Jian-Guo", | |||
"familyName": "Liu", | |||
"address": { | |||
"addressCountry": "CN", | |||
"@type": "PostalAddress" | |||
}, | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Beijing University of Posts and Telecommunications", | |||
"alternateName": "School of science", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "12472" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Jiangxi Normal University", | |||
"alternateName": "College of Science", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "12642" | |||
} | |||
} | |||
], | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Jiangxi University of Chinese Medicine", | |||
"alternateName": "College of Computer", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "74582" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Jiangxi University of Technology", | |||
"alternateName": "College of Computer", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "177532" | |||
} | |||
} | |||
], | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-024-09472-4", | |||
"name": "Solving the variable coefficient nonlinear partial differential equations based on the bilinear residual network method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-024-09472-4" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.22541/au.170668832.28112047/v1", | |||
"name": "Different wave structures for a new extended shallow water wave equation in (3+1) dimension", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.22541/au.170668832.28112047/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/s13360-023-04831-3", | |||
"name": "New periodic-wave, periodic-cross-kink wave, three wave and other analytical wave solitons of new (2+1)-dimensional KdV equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/s13360-023-04831-3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2023/9321673", | |||
"name": "Double-Periodic Soliton Solutions of the (2+1)-Dimensional Ito Equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2023/9321673" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rinp.2022.105937", | |||
"name": "New dynamical behaviors for a new extension of the Shallow water model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rinp.2022.105937" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2020-0021", | |||
"name": "Interaction solutions of a variable-coefficient Kadomtsev\u2013Petviashvili equation with self-consistent sources", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2020-0021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2022/2815298", | |||
"name": "Different Wave Structures for the (2+1)-Dimensional Korteweg-de Vries Equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2022/2815298" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00033-021-01584-w", | |||
"name": "Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00033-021-01584-w" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1142/s0217984921501967", | |||
"name": "New optical soliton solutions for Fokas\u2013Lenells dynamical equation via two various methods", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1142/s0217984921501967" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/dmq1h-8jg05", | |||
"name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/dmq1h-8jg05" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/jnyxx-v2y31", | |||
"name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/jnyxx-v2y31" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rinp.2021.104009", | |||
"name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rinp.2021.104009" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1402-4896/abd3c3", | |||
"name": "Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1402-4896/abd3c3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-020-06186-1", | |||
"name": "Multiple rogue wave, breather wave and interaction solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-020-06186-1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.22541/au.161008575.57365949/v1", | |||
"name": "Breather-wave, multi-wave and interaction solutions for the (3+1)-dimensional generalized breaking soliton equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.22541/au.161008575.57365949/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s13324-020-00387-y", | |||
"name": "Double-periodic soliton solutions for the new (2\u00a0+\u00a01)-dimensional KdV equation in fluid flows and plasma physics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s13324-020-00387-y" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s12043-019-1893-1", | |||
"name": "Exact solitary wave solutions to the (2 + 1)-dimensional generalised Camassa\u2013Holm\u2013Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85077326059" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s12043-019-1893-1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/5.0019219", | |||
"name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/5.0019219" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/dzy3t-0ag17", | |||
"name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/dzy3t-0ag17" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.60692/fhexc-3bz07", | |||
"name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.60692/fhexc-3bz07" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/s13360-019-00049-4", | |||
"name": "Multi-wave, breather wave, and interaction solutions of the Hirota\u2013Satsuma\u2013Ito equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/s13360-019-00049-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85077548205" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/s13360-020-00405-9", | |||
"name": "An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo\u2013Miwa model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85085484670" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/s13360-020-00405-9" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3934/math.2020029", | |||
"name": "Complexiton solutions and periodic-soliton solutions for the (2+1)-dimensional blmp equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3934/math.2020029" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85076885142" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s40840-019-00836-3", | |||
"name": "Existence Results of Multiple Solutions for a 2nth-Order Finite Difference Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85073978864" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s40840-019-00836-3" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.11948/20190172", | |||
"name": "Interaction solutions and abundant exact solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85085021349" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.11948/20190172" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cjph.2020.08.008", | |||
"name": "Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cjph.2020.08.008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85089728348" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.camwa.2019.03.008", | |||
"name": "Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.camwa.2019.03.008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85062614713" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1140/epjp/i2019-12470-0", | |||
"name": "Lump-type solutions and interaction solutions for the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1140/epjp/i2019-12470-0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85061252058" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00033-018-1050-6", | |||
"name": "The solitary wave, rogue wave and periodic solutions for the ( $$3+1$$ 3 + 1 )-dimensional soliton equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85057493951" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00033-018-1050-6" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-018-4612-4", | |||
"name": "Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-018-4612-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85055683173" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0253-6102/71/7/793", | |||
"name": "Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85070609971" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0253-6102/71/7/793" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1142/s0217979219503429", | |||
"name": "Symbolic computations: Dispersive soliton solutions for (3 + 1)-dimensional Boussinesq and Kadomtsev-Petviashvili dynamical equations and its applications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1142/s0217979219503429" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85075787610" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2018.06.011", | |||
"name": "Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85049115852" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2018.06.011" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1142/s0217984918503438", | |||
"name": "Mixed type exact solutions to the (2+1)-dimensional Ito equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85053779719" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1142/s0217984918503438" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-018-4223-0", | |||
"name": "Interaction behaviors for the ( $$\\varvec{2+1}$$ 2 + 1 )-dimensional Sawada\u2013Kotera equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-018-4223-0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85044528800" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s12043-018-1568-3", | |||
"name": "Multiple periodic-soliton solutions of the $$(3+1)$$ ( 3 + 1 ) -dimensional generalised shallow water equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s12043-018-1568-3" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85046291663" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/ccdc.2018.8407535", | |||
"name": "New exact solutions for the generalized Kuramoto-Sivashinsky equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/ccdc.2018.8407535" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85050882369" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0253-6102/69/5/585", | |||
"name": "New Double-Periodic Soliton Solutions for the (2+1)-Dimensional Breaking Soliton Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0253-6102/69/5/585" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85053639145" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.camwa.2018.02.020", | |||
"name": "Double-periodic soliton solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation in incompressible fluid", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85042937816" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.camwa.2018.02.020" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2017.12.011", | |||
"name": "New non-traveling wave solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2017.12.011" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85040089461" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-018-4111-7", | |||
"name": "Abundant lump and lump\u2013kink solutions for the new (3+1)-dimensional generalized Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-018-4111-7" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85045244811" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2018.02.006", | |||
"name": "Existence of infinitely many solutions for fourth-order impulsive differential equations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85042482211" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2018.02.006" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.aml.2018.01.010", | |||
"name": "Multiple soliton solutions for the new (2+1)-dimensional Korteweg\u2013de Vries equation by multiple exp-function method", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.aml.2018.01.010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85041483774" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-017-3667-y", | |||
"name": "New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85023779777" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-017-3667-y" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/1.4999913", | |||
"name": "New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/1.4999913" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85031934617" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-017-3884-4", | |||
"name": "New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg\u2013de Vries equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85032706464" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-017-3884-4" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-016-3267-2", | |||
"name": "New three-wave solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-016-3267-2" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85006835804" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2016-0086", | |||
"name": "A Class of Exact Solutions of (3+1)-Dimensional Generalized B-Type Kadomtsev\u2013Petviashvili Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85017290749" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2016-0086" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Exact periodic cross-kink wave solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85017416405" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/1.4966020", | |||
"name": "Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/1.4966020" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84994385977" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2015-0122", | |||
"name": "Multiple Soliton Solutions, Soliton-Type Solutions and Hyperbolic Solutions for the Benjamin\u2013Bona\u2013Mahony Equation with Variable Coefficients in Rotating Fluids and One-Dimensional Transmitted Waves", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2015-0122" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84983249806" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11071-016-2914-y", | |||
"name": "Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1) -dimensional generalized shallow water equation in oceans, estuaries and impoundments", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11071-016-2914-y" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84976480775" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3233/fi-2016-1355", | |||
"name": "Transformations and Soliton Solutions for a Variable-coefficient Nonlinear Schr\u00f6dinger Equation in the Dispersion Decreasing Fiber with Symbolic Computation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84975518258" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3233/fi-2016-1355" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1515/ijnsns-2013-0114", | |||
"name": "A class of exact solution of (3+1)-dimensional generalized shallow water equation system", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1515/ijnsns-2013-0114" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84923199028" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Solving (3 + 1)-dimensional generalized BKP equations by the improved (G\u2032/G)-expansion method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84947234205" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3233/fi-2014-1056", | |||
"name": "Extended Generalized Hyperbolic-function Method and New Exact Solutions of the Generalized Hamiltonian and NNV Equations by the Symbolic Computation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3233/fi-2014-1056" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84912117129" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s13226-014-0100-9", | |||
"name": "Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84920764408" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s13226-014-0100-9" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1186/2251-7235-7-49", | |||
"name": "Auto-B\u00e4cklund transformation and new exact solutions of the (3+1)-dimensional KP equation with variable coefficients", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1186/2251-7235-7-49" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/cdciem.2012.91", | |||
"name": "Generalized Hyperbolic-function Method with Computerized Symbolic Computation to the Nizhnik-Novikov-Veselov Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84860528346" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/cdciem.2012.91" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cnsns.2008.01.011", | |||
"name": "Soliton-like solutions for the modified variable-coefficient Ginzburg\u2013Landau equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cnsns.2008.01.011" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-55549136097" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cpc.2008.06.014", | |||
"name": "Auto-B\u00e4cklund transformation and exact solutions of the generalized variable-coefficient Kadomtsev\u2013Petviashvili equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-53649087961" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cpc.2008.06.014" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0253-6102/47/1/030", | |||
"name": "Multiple Soliton-Like Solutions and Similarity Reductions of a Spherical Kadomtsev\u2013Petviashvili Equation from Plasma Physics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33846867692" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0253-6102/47/1/030" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/1.2435324", | |||
"name": "Auto-Ba\u0308cklund transformation and new exact solutions of the generalized variable-coefficients two-dimensional Korteweg\u2013de Vries model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/1.2435324" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33847719130" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s1005-8885(07)60020-x", | |||
"name": "Transformations for the variable coefficient Ginzburg-Landau equation with symbolic computation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s1005-8885(07)60020-x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33751558416" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/0256-307x/23/7/004", | |||
"name": "Auto-B\u00e4cklund Transformation and Soliton-Type Solutions of the Generalized Variable-Coefficient Kadomtsev\u2013Petviashvili Equation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/0256-307x/23/7/004" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745606154" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.20944/preprints201811.0443.v1", | |||
"name": "Extended Rational Sinh-Cosh and Sin-Cos Methods to Derive Solutions to the Coupled Higgs System", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.20944/preprints201811.0443.v1" | |||
} | |||
} | |||
] | |||
}, | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "ResearcherID", | |||
"value": "I-3808-2013" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "56479400700" | |||
} | |||
] | |||
} | } | ||
} | } |
Latest revision as of 20:11, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5042214194", "orcid": "https://orcid.org/0000-0002-6058-5472", "display_name": "Jian-Guo Liu", "display_name_alternatives": [ "Liu Jian\u2010Guo", "Jianguo Liu", "Jian\u2010Guo Liu", "Liu Jianguo" ], "works_count": 74, "cited_by_count": 1401, "summary_stats": { "2yr_mean_citedness": 7.111111111111111, "h_index": 22, "i10_index": 34 }, "ids": { "openalex": "https://openalex.org/A5042214194", "orcid": "https://orcid.org/0000-0002-6058-5472", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=56479400700&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I10899854", "ror": "https://ror.org/03jy32q83", "display_name": "Jiangxi University of Traditional Chinese Medicine", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I10899854" ] }, "years": [ 2024, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014 ] }, { "institution": { "id": "https://openalex.org/I139759216", "ror": "https://ror.org/04w9fbh59", "display_name": "Beijing University of Posts and Telecommunications", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I139759216" ] }, "years": [ 2021, 2020, 2019, 2018, 2017, 2007, 2006 ] }, { "institution": { "id": "https://openalex.org/I4210163048", "ror": "https://ror.org/05d5kcc69", "display_name": "Jiangxi College of Applied Technology", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I4210163048" ] }, "years": [ 2017, 2014 ] }, { "institution": { "id": "https://openalex.org/I170897317", "ror": "https://ror.org/00py81415", "display_name": "Duke University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I170897317" ] }, "years": [ 2017, 2016 ] }, { "institution": { "id": "https://openalex.org/I3131412887", "ror": "https://ror.org/05k2j8e48", "display_name": "Jiangxi University of Technology", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I3131412887" ] }, "years": [ 2009, 2008 ] }, { "institution": { "id": "https://openalex.org/I139660479", "ror": "https://ror.org/00f1zfq44", "display_name": "Central South University", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I139660479" ] }, "years": [ 2008 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I10899854", "ror": "https://ror.org/03jy32q83", "display_name": "Jiangxi University of Traditional Chinese Medicine", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I10899854" ] } ], "topics": [ { "id": "https://openalex.org/T10248", "display_name": "Rogue Waves in Nonlinear Systems", "count": 67, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11575", "display_name": "Discrete Solitons in Nonlinear Photonic Systems", "count": 55, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10288", "display_name": "Anomalous Diffusion Modeling and Analysis", "count": 29, "subfield": { "id": "https://openalex.org/subfields/2611", "display_name": "Modeling and Simulation" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10287", "display_name": "Cluster Algebras and Triangulated Categories", "count": 23, "subfield": { "id": "https://openalex.org/subfields/2608", "display_name": "Geometry and Topology" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11654", "display_name": "Global Well-Posedness of Nonlinear Wave Equations", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2610", "display_name": "Mathematical Physics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12727", "display_name": "Numerical Methods for Singularly Perturbed Problems", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11262", "display_name": "Parity-Time Symmetry in Optics and Quantum Mechanics", "count": 4, "subfield": { "id": "https://openalex.org/subfields/3107", "display_name": "Atomic and Molecular Physics, and Optics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12396", "display_name": "Bifurcations in Planar Polynomial Systems", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2608", "display_name": "Geometry and Topology" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10988", "display_name": "Optical Frequency Combs and Ultrafast Lasers", "count": 4, "subfield": { "id": "https://openalex.org/subfields/3107", "display_name": "Atomic and Molecular Physics, and Optics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12661", "display_name": "Convergence Analysis of Iterative Methods for Nonlinear Equations", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10541", "display_name": "Theory and Applications of Fractional Differential Equations", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2604", "display_name": "Applied Mathematics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11416", "display_name": "Numerical Integration Methods for Differential Equations", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11206", "display_name": "Physics-Informed Neural Networks for Scientific Computing", "count": 2, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11061", "display_name": "Dynamics of Ocean Surface Waves and Wind Interaction", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11236", "display_name": "System Identification Techniques", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2207", "display_name": "Control and Systems Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11187", "display_name": "Dynamics of Synchronization in Complex Networks", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1705", "display_name": "Computer Networks and Communications" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13485", "display_name": "Human Impact on Marine Ecology and Fisheries", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13862", "display_name": "Fundamentals and Applications of Finite Element Analysis", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2211", "display_name": "Mechanics of Materials" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11798", "display_name": "Experimental Design and Optimization Methods", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12141", "display_name": "Dynamics and Stability of Thin Liquid Films", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11522", "display_name": "Design and Optimization of Field-Programmable Gate Arrays and Application-Specific Integrated Circuits", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11527", "display_name": "Three-Dimensional Integrated Circuits", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10545", "display_name": "Iterative Algorithms for Nonlinear Operators and Optimization", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10848", "display_name": "Multiobjective Optimization in Evolutionary Algorithms", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10194", "display_name": "Fractional Laplacian Operators", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2604", "display_name": "Applied Mathematics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T11575", "display_name": "Discrete Solitons in Nonlinear Photonic Systems", "value": 0.0005089, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10248", "display_name": "Rogue Waves in Nonlinear Systems", "value": 0.0003592, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10288", "display_name": "Anomalous Diffusion Modeling and Analysis", "value": 0.0002322, "subfield": { "id": "https://openalex.org/subfields/2611", "display_name": "Modeling and Simulation" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10287", "display_name": "Cluster Algebras and Triangulated Categories", "value": 0.0001017, "subfield": { "id": "https://openalex.org/subfields/2608", "display_name": "Geometry and Topology" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11654", "display_name": "Global Well-Posedness of Nonlinear Wave Equations", "value": 6.86e-05, "subfield": { "id": "https://openalex.org/subfields/2610", "display_name": "Mathematical Physics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11262", "display_name": "Parity-Time Symmetry in Optics and Quantum Mechanics", "value": 6.51e-05, "subfield": { "id": "https://openalex.org/subfields/3107", "display_name": "Atomic and Molecular Physics, and Optics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12661", "display_name": "Convergence Analysis of Iterative Methods for Nonlinear Equations", "value": 4.3e-05, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12396", "display_name": "Bifurcations in Planar Polynomial Systems", "value": 3.32e-05, "subfield": { "id": "https://openalex.org/subfields/2608", "display_name": "Geometry and Topology" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12727", "display_name": "Numerical Methods for Singularly Perturbed Problems", "value": 2.87e-05, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10541", "display_name": "Theory and Applications of Fractional Differential Equations", "value": 2.68e-05, "subfield": { "id": "https://openalex.org/subfields/2604", "display_name": "Applied Mathematics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11206", "display_name": "Physics-Informed Neural Networks for Scientific Computing", "value": 2.39e-05, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11416", "display_name": "Numerical Integration Methods for Differential Equations", "value": 1.79e-05, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13485", "display_name": "Human Impact on Marine Ecology and Fisheries", "value": 1.68e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13862", "display_name": "Fundamentals and Applications of Finite Element Analysis", "value": 1.64e-05, "subfield": { "id": "https://openalex.org/subfields/2211", "display_name": "Mechanics of Materials" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11061", "display_name": "Dynamics of Ocean Surface Waves and Wind Interaction", "value": 1.63e-05, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11798", "display_name": "Experimental Design and Optimization Methods", "value": 1.5e-05, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12141", "display_name": "Dynamics and Stability of Thin Liquid Films", "value": 1.37e-05, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10988", "display_name": "Optical Frequency Combs and Ultrafast Lasers", "value": 1.34e-05, "subfield": { "id": "https://openalex.org/subfields/3107", "display_name": "Atomic and Molecular Physics, and Optics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11522", "display_name": "Design and Optimization of Field-Programmable Gate Arrays and Application-Specific Integrated Circuits", "value": 1.21e-05, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11236", "display_name": "System Identification Techniques", "value": 1.2e-05, "subfield": { "id": "https://openalex.org/subfields/2207", "display_name": "Control and Systems Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11187", "display_name": "Dynamics of Synchronization in Complex Networks", "value": 1.09e-05, "subfield": { "id": "https://openalex.org/subfields/1705", "display_name": "Computer Networks and Communications" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11527", "display_name": "Three-Dimensional Integrated Circuits", "value": 1.01e-05, "subfield": { "id": "https://openalex.org/subfields/2208", "display_name": "Electrical and Electronic Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10545", "display_name": "Iterative Algorithms for Nonlinear Operators and Optimization", "value": 9.8e-06, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10848", "display_name": "Multiobjective Optimization in Evolutionary Algorithms", "value": 9.6e-06, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10194", "display_name": "Fractional Laplacian Operators", "value": "9e-06", "subfield": { "id": "https://openalex.org/subfields/2604", "display_name": "Applied Mathematics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 98.6 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 91.9 }, { "id": "https://openalex.org/C134306372", "wikidata": "https://www.wikidata.org/wiki/Q7754", "display_name": "Mathematical analysis", "level": 1, "score": 90.5 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 86.5 }, { "id": "https://openalex.org/C158622935", "wikidata": "https://www.wikidata.org/wiki/Q660848", "display_name": "Nonlinear system", "level": 2, "score": 77.0 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 70.3 }, { "id": "https://openalex.org/C37914503", "wikidata": "https://www.wikidata.org/wiki/Q156495", "display_name": "Mathematical physics", "level": 1, "score": 51.4 }, { "id": "https://openalex.org/C28826006", "wikidata": "https://www.wikidata.org/wiki/Q33521", "display_name": "Applied mathematics", "level": 1, "score": 48.6 }, { "id": "https://openalex.org/C202444582", "wikidata": "https://www.wikidata.org/wiki/Q837863", "display_name": "Pure mathematics", "level": 1, "score": 40.5 }, { "id": "https://openalex.org/C31972630", "wikidata": "https://www.wikidata.org/wiki/Q844240", "display_name": "Computer vision", "level": 1, "score": 39.2 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 39.2 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 39.2 }, { "id": "https://openalex.org/C199360897", "wikidata": "https://www.wikidata.org/wiki/Q9143", "display_name": "Programming language", "level": 1, "score": 39.2 }, { "id": "https://openalex.org/C11413529", "wikidata": "https://www.wikidata.org/wiki/Q8366", "display_name": "Algorithm", "level": 1, "score": 35.1 }, { "id": "https://openalex.org/C205203396", "wikidata": "https://www.wikidata.org/wiki/Q612143", "display_name": "Bilinear interpolation", "level": 2, "score": 35.1 }, { "id": "https://openalex.org/C87651913", "wikidata": "https://www.wikidata.org/wiki/Q464949", "display_name": "Soliton", "level": 3, "score": 33.8 }, { "id": "https://openalex.org/C45374587", "wikidata": "https://www.wikidata.org/wiki/Q12525525", "display_name": "Computation", "level": 2, "score": 32.4 }, { "id": "https://openalex.org/C54355233", "wikidata": "https://www.wikidata.org/wiki/Q7162", "display_name": "Genetics", "level": 1, "score": 32.4 }, { "id": "https://openalex.org/C110812573", "wikidata": "https://www.wikidata.org/wiki/Q175515", "display_name": "Symbolic computation", "level": 2, "score": 29.7 }, { "id": "https://openalex.org/C93779851", "wikidata": "https://www.wikidata.org/wiki/Q271977", "display_name": "Partial differential equation", "level": 2, "score": 28.4 }, { "id": "https://openalex.org/C182365436", "wikidata": "https://www.wikidata.org/wiki/Q50701", "display_name": "Variable (mathematics)", "level": 2, "score": 28.4 }, { "id": "https://openalex.org/C2524010", "wikidata": "https://www.wikidata.org/wiki/Q8087", "display_name": "Geometry", "level": 1, "score": 27.0 }, { "id": "https://openalex.org/C97355855", "wikidata": "https://www.wikidata.org/wiki/Q11473", "display_name": "Thermodynamics", "level": 1, "score": 27.0 }, { "id": "https://openalex.org/C2988173416", "wikidata": "https://www.wikidata.org/wiki/Q37172", "display_name": "Traveling wave", "level": 2, "score": 27.0 }, { "id": "https://openalex.org/C78045399", "wikidata": "https://www.wikidata.org/wiki/Q11214", "display_name": "Differential equation", "level": 2, "score": 25.7 } ], "counts_by_year": [ { "year": 2024, "works_count": 7, "cited_by_count": 128 }, { "year": 2023, "works_count": 0, "cited_by_count": 246 }, { "year": 2022, "works_count": 3, "cited_by_count": 318 }, { "year": 2021, "works_count": 6, "cited_by_count": 323 }, { "year": 2020, "works_count": 11, "cited_by_count": 252 }, { "year": 2019, "works_count": 6, "cited_by_count": 219 }, { "year": 2018, "works_count": 14, "cited_by_count": 129 }, { "year": 2017, "works_count": 6, "cited_by_count": 15 }, { "year": 2016, "works_count": 6, "cited_by_count": 14 }, { "year": 2015, "works_count": 2, "cited_by_count": 4 }, { "year": 2014, "works_count": 3, "cited_by_count": 5 }, { "year": 2013, "works_count": 1, "cited_by_count": 4 }, { "year": 2012, "works_count": 1, "cited_by_count": 0 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5042214194", "updated_date": "2024-08-20T07:49:33.844644", "created_date": "2023-07-21", "_id": "https://openalex.org/A5042214194" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-6058-5472", "mainEntityOfPage": "https://orcid.org/0000-0002-6058-5472", "givenName": "Jian-Guo", "familyName": "Liu", "address": { "addressCountry": "CN", "@type": "PostalAddress" }, "alumniOf": [ { "@type": "Organization", "name": "Beijing University of Posts and Telecommunications", "alternateName": "School of science", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "12472" } }, { "@type": "Organization", "name": "Jiangxi Normal University", "alternateName": "College of Science", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "12642" } } ], "affiliation": [ { "@type": "Organization", "name": "Jiangxi University of Chinese Medicine", "alternateName": "College of Computer", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "74582" } }, { "@type": "Organization", "name": "Jiangxi University of Technology", "alternateName": "College of Computer", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "177532" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-024-09472-4", "name": "Solving the variable coefficient nonlinear partial differential equations based on the bilinear residual network method", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-024-09472-4" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.22541/au.170668832.28112047/v1", "name": "Different wave structures for a new extended shallow water wave equation in (3+1) dimension", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/au.170668832.28112047/v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1140/epjp/s13360-023-04831-3", "name": "New periodic-wave, periodic-cross-kink wave, three wave and other analytical wave solitons of new (2+1)-dimensional KdV equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1140/epjp/s13360-023-04831-3" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1155/2023/9321673", "name": "Double-Periodic Soliton Solutions of the (2+1)-Dimensional Ito Equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1155/2023/9321673" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rinp.2022.105937", "name": "New dynamical behaviors for a new extension of the Shallow water model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rinp.2022.105937" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1515/ijnsns-2020-0021", "name": "Interaction solutions of a variable-coefficient Kadomtsev\u2013Petviashvili equation with self-consistent sources", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1515/ijnsns-2020-0021" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1155/2022/2815298", "name": "Different Wave Structures for the (2+1)-Dimensional Korteweg-de Vries Equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1155/2022/2815298" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00033-021-01584-w", "name": "Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00033-021-01584-w" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1142/s0217984921501967", "name": "New optical soliton solutions for Fokas\u2013Lenells dynamical equation via two various methods", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1142/s0217984921501967" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/dmq1h-8jg05", "name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/dmq1h-8jg05" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/jnyxx-v2y31", "name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/jnyxx-v2y31" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rinp.2021.104009", "name": "Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo\u2013Miwa equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rinp.2021.104009" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1402-4896/abd3c3", "name": "Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1402-4896/abd3c3" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-020-06186-1", "name": "Multiple rogue wave, breather wave and interaction solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-020-06186-1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.22541/au.161008575.57365949/v1", "name": "Breather-wave, multi-wave and interaction solutions for the (3+1)-dimensional generalized breaking soliton equation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/au.161008575.57365949/v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s13324-020-00387-y", "name": "Double-periodic soliton solutions for the new (2\u00a0+\u00a01)-dimensional KdV equation in fluid flows and plasma physics", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13324-020-00387-y" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s12043-019-1893-1", "name": "Exact solitary wave solutions to the (2 + 1)-dimensional generalised Camassa\u2013Holm\u2013Kadomtsev\u2013Petviashvili equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077326059" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s12043-019-1893-1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1063/5.0019219", "name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1063/5.0019219" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/dzy3t-0ag17", "name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/dzy3t-0ag17" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.60692/fhexc-3bz07", "name": "The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.60692/fhexc-3bz07" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1140/epjp/s13360-019-00049-4", "name": "Multi-wave, breather wave, and interaction solutions of the Hirota\u2013Satsuma\u2013Ito equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1140/epjp/s13360-019-00049-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077548205" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1140/epjp/s13360-020-00405-9", "name": "An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo\u2013Miwa model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85085484670" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1140/epjp/s13360-020-00405-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3934/math.2020029", "name": "Complexiton solutions and periodic-soliton solutions for the (2+1)-dimensional blmp equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3934/math.2020029" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85076885142" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s40840-019-00836-3", "name": "Existence Results of Multiple Solutions for a 2nth-Order Finite Difference Equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85073978864" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s40840-019-00836-3" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.11948/20190172", "name": "Interaction solutions and abundant exact solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85085021349" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.11948/20190172" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.cjph.2020.08.008", "name": "Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cjph.2020.08.008" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089728348" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.camwa.2019.03.008", "name": "Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.camwa.2019.03.008" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85062614713" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1140/epjp/i2019-12470-0", "name": "Lump-type solutions and interaction solutions for the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1140/epjp/i2019-12470-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85061252058" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00033-018-1050-6", "name": "The solitary wave, rogue wave and periodic solutions for the ( $$3+1$$ 3 + 1 )-dimensional soliton equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85057493951" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00033-018-1050-6" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-018-4612-4", "name": "Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev\u2013Petviashvili equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-018-4612-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85055683173" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/0253-6102/71/7/793", "name": "Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85070609971" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/0253-6102/71/7/793" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1142/s0217979219503429", "name": "Symbolic computations: Dispersive soliton solutions for (3 + 1)-dimensional Boussinesq and Kadomtsev-Petviashvili dynamical equations and its applications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1142/s0217979219503429" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075787610" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.aml.2018.06.011", "name": "Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85049115852" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.aml.2018.06.011" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1142/s0217984918503438", "name": "Mixed type exact solutions to the (2+1)-dimensional Ito equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85053779719" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1142/s0217984918503438" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-018-4223-0", "name": "Interaction behaviors for the ( $$\\varvec{2+1}$$ 2 + 1 )-dimensional Sawada\u2013Kotera equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-018-4223-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85044528800" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s12043-018-1568-3", "name": "Multiple periodic-soliton solutions of the $$(3+1)$$ ( 3 + 1 ) -dimensional generalised shallow water equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s12043-018-1568-3" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85046291663" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/ccdc.2018.8407535", "name": "New exact solutions for the generalized Kuramoto-Sivashinsky equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/ccdc.2018.8407535" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85050882369" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/0253-6102/69/5/585", "name": "New Double-Periodic Soliton Solutions for the (2+1)-Dimensional Breaking Soliton Equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/0253-6102/69/5/585" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85053639145" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.camwa.2018.02.020", "name": "Double-periodic soliton solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation in incompressible fluid", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042937816" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.camwa.2018.02.020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.aml.2017.12.011", "name": "New non-traveling wave solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.aml.2017.12.011" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040089461" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-018-4111-7", "name": "Abundant lump and lump\u2013kink solutions for the new (3+1)-dimensional generalized Kadomtsev\u2013Petviashvili equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-018-4111-7" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85045244811" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.aml.2018.02.006", "name": "Existence of infinitely many solutions for fourth-order impulsive differential equations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042482211" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.aml.2018.02.006" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.aml.2018.01.010", "name": "Multiple soliton solutions for the new (2+1)-dimensional Korteweg\u2013de Vries equation by multiple exp-function method", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.aml.2018.01.010" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041483774" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-017-3667-y", "name": "New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85023779777" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-017-3667-y" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1063/1.4999913", "name": "New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1063/1.4999913" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85031934617" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-017-3884-4", "name": "New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg\u2013de Vries equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85032706464" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-017-3884-4" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-016-3267-2", "name": "New three-wave solutions for the (3+1)-dimensional Boiti\u2013Leon\u2013Manna\u2013Pempinelli equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-016-3267-2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85006835804" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1515/ijnsns-2016-0086", "name": "A Class of Exact Solutions of (3+1)-Dimensional Generalized B-Type Kadomtsev\u2013Petviashvili Equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85017290749" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1515/ijnsns-2016-0086" } ] }, { "@type": "CreativeWork", "name": "Exact periodic cross-kink wave solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85017416405" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1063/1.4966020", "name": "Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1063/1.4966020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84994385977" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1515/ijnsns-2015-0122", "name": "Multiple Soliton Solutions, Soliton-Type Solutions and Hyperbolic Solutions for the Benjamin\u2013Bona\u2013Mahony Equation with Variable Coefficients in Rotating Fluids and One-Dimensional Transmitted Waves", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1515/ijnsns-2015-0122" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983249806" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11071-016-2914-y", "name": "Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1) -dimensional generalized shallow water equation in oceans, estuaries and impoundments", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11071-016-2914-y" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84976480775" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3233/fi-2016-1355", "name": "Transformations and Soliton Solutions for a Variable-coefficient Nonlinear Schr\u00f6dinger Equation in the Dispersion Decreasing Fiber with Symbolic Computation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84975518258" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3233/fi-2016-1355" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1515/ijnsns-2013-0114", "name": "A class of exact solution of (3+1)-dimensional generalized shallow water equation system", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1515/ijnsns-2013-0114" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923199028" } ] }, { "@type": "CreativeWork", "name": "Solving (3 + 1)-dimensional generalized BKP equations by the improved (G\u2032/G)-expansion method", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84947234205" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3233/fi-2014-1056", "name": "Extended Generalized Hyperbolic-function Method and New Exact Solutions of the Generalized Hamiltonian and NNV Equations by the Symbolic Computation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3233/fi-2014-1056" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84912117129" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s13226-014-0100-9", "name": "Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84920764408" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13226-014-0100-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1186/2251-7235-7-49", "name": "Auto-B\u00e4cklund transformation and new exact solutions of the (3+1)-dimensional KP equation with variable coefficients", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1186/2251-7235-7-49" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/cdciem.2012.91", "name": "Generalized Hyperbolic-function Method with Computerized Symbolic Computation to the Nizhnik-Novikov-Veselov Equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860528346" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/cdciem.2012.91" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.cnsns.2008.01.011", "name": "Soliton-like solutions for the modified variable-coefficient Ginzburg\u2013Landau equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cnsns.2008.01.011" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-55549136097" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.cpc.2008.06.014", "name": "Auto-B\u00e4cklund transformation and exact solutions of the generalized variable-coefficient Kadomtsev\u2013Petviashvili equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-53649087961" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cpc.2008.06.014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/0253-6102/47/1/030", "name": "Multiple Soliton-Like Solutions and Similarity Reductions of a Spherical Kadomtsev\u2013Petviashvili Equation from Plasma Physics", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33846867692" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/0253-6102/47/1/030" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1063/1.2435324", "name": "Auto-Ba\u0308cklund transformation and new exact solutions of the generalized variable-coefficients two-dimensional Korteweg\u2013de Vries model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1063/1.2435324" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33847719130" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s1005-8885(07)60020-x", "name": "Transformations for the variable coefficient Ginzburg-Landau equation with symbolic computation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s1005-8885(07)60020-x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33751558416" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/0256-307x/23/7/004", "name": "Auto-B\u00e4cklund Transformation and Soliton-Type Solutions of the Generalized Variable-Coefficient Kadomtsev\u2013Petviashvili Equation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/0256-307x/23/7/004" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745606154" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.20944/preprints201811.0443.v1", "name": "Extended Rational Sinh-Cosh and Sin-Cos Methods to Derive Solutions to the Coupled Higgs System", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.20944/preprints201811.0443.v1" } } ] }, "identifier": [ { "@type": "PropertyValue", "propertyID": "ResearcherID", "value": "I-3808-2013" }, { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "56479400700" } ] }
}