Item talk:Q62587: Difference between revisions
From geokb
(Wrote fresh schema.org document to item wiki page) |
(Update item cache) |
||
Line 1: | Line 1: | ||
{"@context": "https://schema.org", "@type": "CreativeWork", "additionalType": "USGS Numbered Series", "name": "A Bayesian network to predict vulnerability to sea-level rise: data report", "identifier": [{"@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "ds601", "url": "https://pubs.usgs.gov/publication/ds601"}, {"@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70006066}, {"@type": "PropertyValue", "propertyID": "DOI", "value": "10.3133/ds601", "url": "https://doi.org/10.3133/ds601"}], "inLanguage": "en", "isPartOf": [{"@type": "CreativeWorkSeries", "name": "Data Series"}], "datePublished": "2011", "dateModified": "2012-02-10", "abstract": "During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.", "description": "15 p.; Download of Data Files", "publisher": {"@type": "Organization", "name": "U.S. Geological Survey"}, "author": [{"@type": "Person", "name": "Thieler, E. Robert rthieler@usgs.gov", "givenName": "E. Robert", "familyName": "Thieler", "email": "rthieler@usgs.gov", "identifier": {"@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-4311-9717", "url": "https://orcid.org/0000-0003-4311-9717"}, "affiliation": [{"@type": "Organization", "name": "Woods Hole Coastal and Marine Science Center", "url": "https://www.usgs.gov/centers/woods-hole-coastal-and-marine-science-center"}]}, {"@type": "Person", "name": "Plant, Nathaniel G. nplant@usgs.gov", "givenName": "Nathaniel G.", "familyName": "Plant", "email": "nplant@usgs.gov", "identifier": {"@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5703-5672", "url": "https://orcid.org/0000-0002-5703-5672"}, "affiliation": [{"@type": "Organization", "name": " | { | ||
"USGS Publications Warehouse": { | |||
"schema": { | |||
"@context": "https://schema.org", | |||
"@type": "CreativeWork", | |||
"additionalType": "USGS Numbered Series", | |||
"name": "A Bayesian network to predict vulnerability to sea-level rise: data report", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "USGS Publications Warehouse IndexID", | |||
"value": "ds601", | |||
"url": "https://pubs.usgs.gov/publication/ds601" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "USGS Publications Warehouse Internal ID", | |||
"value": 70006066 | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "DOI", | |||
"value": "10.3133/ds601", | |||
"url": "https://doi.org/10.3133/ds601" | |||
} | |||
], | |||
"inLanguage": "en", | |||
"isPartOf": [ | |||
{ | |||
"@type": "CreativeWorkSeries", | |||
"name": "Data Series" | |||
} | |||
], | |||
"datePublished": "2011", | |||
"dateModified": "2012-02-10", | |||
"abstract": "During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.", | |||
"description": "15 p.; Download of Data Files", | |||
"publisher": { | |||
"@type": "Organization", | |||
"name": "U.S. Geological Survey" | |||
}, | |||
"author": [ | |||
{ | |||
"@type": "Person", | |||
"name": "Thieler, E. Robert rthieler@usgs.gov", | |||
"givenName": "E. Robert", | |||
"familyName": "Thieler", | |||
"email": "rthieler@usgs.gov", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ORCID", | |||
"value": "0000-0003-4311-9717", | |||
"url": "https://orcid.org/0000-0003-4311-9717" | |||
}, | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Woods Hole Coastal and Marine Science Center", | |||
"url": "https://www.usgs.gov/centers/woods-hole-coastal-and-marine-science-center" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "Person", | |||
"name": "Plant, Nathaniel G. nplant@usgs.gov", | |||
"givenName": "Nathaniel G.", | |||
"familyName": "Plant", | |||
"email": "nplant@usgs.gov", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ORCID", | |||
"value": "0000-0002-5703-5672", | |||
"url": "https://orcid.org/0000-0002-5703-5672" | |||
}, | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "St. Petersburg Coastal and Marine Science Center", | |||
"url": "https://www.usgs.gov/centers/spcmsc" | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Office of the AD Hazards", | |||
"url": "https://www.usgs.gov/mission-areas/natural-hazards" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "Person", | |||
"name": "Gutierrez, Benjamin T.", | |||
"givenName": "Benjamin T.", | |||
"familyName": "Gutierrez" | |||
} | |||
], | |||
"funder": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Woods Hole Coastal and Marine Science Center", | |||
"url": "https://www.usgs.gov/centers/woods-hole-coastal-and-marine-science-center" | |||
} | |||
], | |||
"spatialCoverage": [ | |||
{ | |||
"@type": "Place", | |||
"additionalType": "country", | |||
"name": "United States", | |||
"url": "https://geonames.org/4074035" | |||
}, | |||
{ | |||
"@type": "Place", | |||
"geo": [ | |||
{ | |||
"@type": "GeoShape", | |||
"additionalProperty": { | |||
"@type": "PropertyValue", | |||
"name": "GeoJSON", | |||
"value": { | |||
"type": "FeatureCollection", | |||
"features": [ | |||
{ | |||
"type": "Feature", | |||
"properties": {}, | |||
"geometry": { | |||
"type": "Polygon", | |||
"coordinates": [ | |||
[ | |||
[ | |||
-82, | |||
24 | |||
], | |||
[ | |||
-82, | |||
46 | |||
], | |||
[ | |||
-66, | |||
46 | |||
], | |||
[ | |||
-66, | |||
24 | |||
], | |||
[ | |||
-82, | |||
24 | |||
] | |||
] | |||
] | |||
} | |||
} | |||
] | |||
} | |||
} | |||
}, | |||
{ | |||
"@type": "GeoCoordinates", | |||
"latitude": 35.0, | |||
"longitude": -74.0 | |||
} | |||
] | |||
} | |||
] | |||
} | |||
}, | |||
"OpenAlex": { | |||
"abstract_inverted_index": { | |||
"During": [ | |||
0 | |||
], | |||
"the": [ | |||
1, | |||
46, | |||
55, | |||
95, | |||
103, | |||
110, | |||
129 | |||
], | |||
"21st": [ | |||
2 | |||
], | |||
"century,": [ | |||
3 | |||
], | |||
"sea-level": [ | |||
4, | |||
69, | |||
78 | |||
], | |||
"rise": [ | |||
5 | |||
], | |||
"is": [ | |||
6, | |||
113, | |||
132 | |||
], | |||
"projected": [ | |||
7 | |||
], | |||
"to": [ | |||
8, | |||
35, | |||
39, | |||
51, | |||
62, | |||
68, | |||
115, | |||
134, | |||
143 | |||
], | |||
"have": [ | |||
9 | |||
], | |||
"a": [ | |||
10, | |||
58 | |||
], | |||
"wide": [ | |||
11 | |||
], | |||
"range": [ | |||
12 | |||
], | |||
"of": [ | |||
13, | |||
57, | |||
76, | |||
94, | |||
138 | |||
], | |||
"effects": [ | |||
14 | |||
], | |||
"on": [ | |||
15, | |||
28 | |||
], | |||
"coastal": [ | |||
16, | |||
41, | |||
86, | |||
124 | |||
], | |||
"environments,": [ | |||
17 | |||
], | |||
"development,": [ | |||
18 | |||
], | |||
"and": [ | |||
19, | |||
53, | |||
88, | |||
123 | |||
], | |||
"infrastructure.": [ | |||
20 | |||
], | |||
"Consequently,": [ | |||
21 | |||
], | |||
"there": [ | |||
22 | |||
], | |||
"has": [ | |||
23 | |||
], | |||
"been": [ | |||
24 | |||
], | |||
"an": [ | |||
25 | |||
], | |||
"increased": [ | |||
26 | |||
], | |||
"focus": [ | |||
27 | |||
], | |||
"developing": [ | |||
29 | |||
], | |||
"modeling": [ | |||
30 | |||
], | |||
"or": [ | |||
31 | |||
], | |||
"other": [ | |||
32 | |||
], | |||
"analytical": [ | |||
33 | |||
], | |||
"approaches": [ | |||
34 | |||
], | |||
"evaluate": [ | |||
36, | |||
54 | |||
], | |||
"potential": [ | |||
37 | |||
], | |||
"impacts": [ | |||
38 | |||
], | |||
"inform": [ | |||
40 | |||
], | |||
"management.": [ | |||
42 | |||
], | |||
"This": [ | |||
43 | |||
], | |||
"report": [ | |||
44 | |||
], | |||
"provides": [ | |||
45 | |||
], | |||
"data": [ | |||
47, | |||
72 | |||
], | |||
"that": [ | |||
48 | |||
], | |||
"were": [ | |||
49 | |||
], | |||
"used": [ | |||
50, | |||
114, | |||
133 | |||
], | |||
"develop": [ | |||
52 | |||
], | |||
"performance": [ | |||
56 | |||
], | |||
"Bayesian": [ | |||
59, | |||
111, | |||
130 | |||
], | |||
"network": [ | |||
60, | |||
112, | |||
131 | |||
], | |||
"designed": [ | |||
61 | |||
], | |||
"predict": [ | |||
63 | |||
], | |||
"long-term": [ | |||
64 | |||
], | |||
"shoreline": [ | |||
65, | |||
139 | |||
], | |||
"change": [ | |||
66, | |||
140 | |||
], | |||
"due": [ | |||
67 | |||
], | |||
"rise.": [ | |||
70 | |||
], | |||
"The": [ | |||
71 | |||
], | |||
"include": [ | |||
73 | |||
], | |||
"local": [ | |||
74 | |||
], | |||
"rates": [ | |||
75 | |||
], | |||
"relative": [ | |||
77 | |||
], | |||
"rise,": [ | |||
79 | |||
], | |||
"wave": [ | |||
80 | |||
], | |||
"height,": [ | |||
81 | |||
], | |||
"tide": [ | |||
82 | |||
], | |||
"range,": [ | |||
83 | |||
], | |||
"geomorphic": [ | |||
84 | |||
], | |||
"classification,": [ | |||
85 | |||
], | |||
"slope,": [ | |||
87 | |||
], | |||
"shoreline-change": [ | |||
89 | |||
], | |||
"rate": [ | |||
90 | |||
], | |||
"compiled": [ | |||
91 | |||
], | |||
"as": [ | |||
92 | |||
], | |||
"part": [ | |||
93 | |||
], | |||
"U.S.": [ | |||
96, | |||
104 | |||
], | |||
"Geological": [ | |||
97 | |||
], | |||
"Survey": [ | |||
98 | |||
], | |||
"Coastal": [ | |||
99 | |||
], | |||
"Vulnerability": [ | |||
100 | |||
], | |||
"Index": [ | |||
101 | |||
], | |||
"for": [ | |||
102 | |||
], | |||
"Atlantic": [ | |||
105 | |||
], | |||
"coast.": [ | |||
106 | |||
], | |||
"In": [ | |||
107 | |||
], | |||
"this": [ | |||
108, | |||
127 | |||
], | |||
"project,": [ | |||
109 | |||
], | |||
"define": [ | |||
116 | |||
], | |||
"relationships": [ | |||
117 | |||
], | |||
"among": [ | |||
118 | |||
], | |||
"driving": [ | |||
119 | |||
], | |||
"forces,": [ | |||
120 | |||
], | |||
"geologic": [ | |||
121 | |||
], | |||
"constraints,": [ | |||
122 | |||
], | |||
"responses.": [ | |||
125 | |||
], | |||
"Using": [ | |||
126 | |||
], | |||
"information,": [ | |||
128 | |||
], | |||
"make": [ | |||
135 | |||
], | |||
"probabilistic": [ | |||
136 | |||
], | |||
"predictions": [ | |||
137 | |||
], | |||
"in": [ | |||
141 | |||
], | |||
"response": [ | |||
142 | |||
], | |||
"different": [ | |||
144 | |||
], | |||
"future": [ | |||
145 | |||
], | |||
"sea-level-rise": [ | |||
146 | |||
], | |||
"scenarios.": [ | |||
147 | |||
] | |||
}, | |||
"apc_list": null, | |||
"apc_paid": null, | |||
"authorships": [ | |||
{ | |||
"author_position": "first", | |||
"author": { | |||
"id": "https://openalex.org/A5017821232", | |||
"display_name": "Benjamin T. Gutierrez", | |||
"orcid": "https://orcid.org/0000-0002-1879-7893" | |||
}, | |||
"institutions": [], | |||
"countries": [], | |||
"is_corresponding": false, | |||
"raw_author_name": "Benjamin T. Gutierrez", | |||
"raw_affiliation_strings": [], | |||
"affiliations": [] | |||
}, | |||
{ | |||
"author_position": "middle", | |||
"author": { | |||
"id": "https://openalex.org/A5065618772", | |||
"display_name": "Nathaniel G. Plant", | |||
"orcid": "https://orcid.org/0000-0002-5703-5672" | |||
}, | |||
"institutions": [], | |||
"countries": [], | |||
"is_corresponding": false, | |||
"raw_author_name": "Nathaniel G. Plant", | |||
"raw_affiliation_strings": [], | |||
"affiliations": [] | |||
}, | |||
{ | |||
"author_position": "last", | |||
"author": { | |||
"id": "https://openalex.org/A5034875623", | |||
"display_name": "E. Robert Thieler", | |||
"orcid": "https://orcid.org/0000-0003-4311-9717" | |||
}, | |||
"institutions": [], | |||
"countries": [], | |||
"is_corresponding": false, | |||
"raw_author_name": "E. Robert Thieler", | |||
"raw_affiliation_strings": [], | |||
"affiliations": [] | |||
} | |||
], | |||
"best_oa_location": null, | |||
"biblio": { | |||
"volume": null, | |||
"issue": null, | |||
"first_page": "1", | |||
"last_page": "15" | |||
}, | |||
"citation_normalized_percentile": { | |||
"value": 0.918579, | |||
"is_in_top_1_percent": false, | |||
"is_in_top_10_percent": true | |||
}, | |||
"cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1537899036", | |||
"cited_by_count": 10, | |||
"cited_by_percentile_year": { | |||
"min": 86, | |||
"max": 87 | |||
}, | |||
"concepts": [ | |||
{ | |||
"id": "https://openalex.org/c152382732", | |||
"wikidata": "https://www.wikidata.org/wiki/Q468756", | |||
"display_name": "Shore", | |||
"level": 2, | |||
"score": 0.82560223, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c2781069661", | |||
"wikidata": "https://www.wikidata.org/wiki/Q7943568", | |||
"display_name": "Vulnerability index", | |||
"level": 3, | |||
"score": 0.61100644, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c33724603", | |||
"wikidata": "https://www.wikidata.org/wiki/Q812540", | |||
"display_name": "Bayesian network", | |||
"level": 2, | |||
"score": 0.6017917, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c95713431", | |||
"wikidata": "https://www.wikidata.org/wiki/Q631425", | |||
"display_name": "Vulnerability (computing)", | |||
"level": 2, | |||
"score": 0.5748638, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c204323151", | |||
"wikidata": "https://www.wikidata.org/wiki/Q905424", | |||
"display_name": "Range (aeronautics)", | |||
"level": 2, | |||
"score": 0.55224824, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c162284963", | |||
"wikidata": "https://www.wikidata.org/wiki/Q17106102", | |||
"display_name": "Submarine pipeline", | |||
"level": 2, | |||
"score": 0.5268606, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c49937458", | |||
"wikidata": "https://www.wikidata.org/wiki/Q2599292", | |||
"display_name": "Probabilistic logic", | |||
"level": 2, | |||
"score": 0.5198427, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c107673813", | |||
"wikidata": "https://www.wikidata.org/wiki/Q812534", | |||
"display_name": "Bayesian probability", | |||
"level": 2, | |||
"score": 0.47978336, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c39432304", | |||
"wikidata": "https://www.wikidata.org/wiki/Q188847", | |||
"display_name": "Environmental science", | |||
"level": 0, | |||
"score": 0.43650407, | |||
"qid": "Q166085" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c74501621", | |||
"wikidata": "https://www.wikidata.org/wiki/Q125465", | |||
"display_name": "Sea level", | |||
"level": 2, | |||
"score": 0.41972393, | |||
"qid": null | |||
}, | |||
{ | |||
"id": "https://openalex.org/c107826830", | |||
"wikidata": "https://www.wikidata.org/wiki/Q929380", | |||
"display_name": "Environmental resource management", | |||
"level": 1, | |||
"score": 0.41052985, | |||
"qid": "Q226238" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c111368507", | |||
"wikidata": "https://www.wikidata.org/wiki/Q43518", | |||
"display_name": "Oceanography", | |||
"level": 1, | |||
"score": 0.39805084, | |||
"qid": "Q166123" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c132651083", | |||
"wikidata": "https://www.wikidata.org/wiki/Q7942", | |||
"display_name": "Climate change", | |||
"level": 2, | |||
"score": 0.39435172, | |||
"qid": "Q169118" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c205649164", | |||
"wikidata": "https://www.wikidata.org/wiki/Q1071", | |||
"display_name": "Geography", | |||
"level": 0, | |||
"score": 0.3710327, | |||
"qid": "Q158983" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c100970517", | |||
"wikidata": "https://www.wikidata.org/wiki/Q52107", | |||
"display_name": "Physical geography", | |||
"level": 1, | |||
"score": 0.3344472, | |||
"qid": "Q226297" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c41008148", | |||
"wikidata": "https://www.wikidata.org/wiki/Q21198", | |||
"display_name": "Computer science", | |||
"level": 0, | |||
"score": 0.27604455, | |||
"qid": "Q158969" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c127313418", | |||
"wikidata": "https://www.wikidata.org/wiki/Q1069", | |||
"display_name": "Geology", | |||
"level": 0, | |||
"score": 0.27271518, | |||
"qid": "Q158984" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c119857082", | |||
"wikidata": "https://www.wikidata.org/wiki/Q2539", | |||
"display_name": "Machine learning", | |||
"level": 1, | |||
"score": 0.10123065, | |||
"qid": "Q169132" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c127413603", | |||
"wikidata": "https://www.wikidata.org/wiki/Q11023", | |||
"display_name": "Engineering", | |||
"level": 0, | |||
"score": 0.10025078, | |||
"qid": "Q158977" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c38652104", | |||
"wikidata": "https://www.wikidata.org/wiki/Q3510521", | |||
"display_name": "Computer security", | |||
"level": 1, | |||
"score": 0.0, | |||
"qid": "Q226217" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c146978453", | |||
"wikidata": "https://www.wikidata.org/wiki/Q3798668", | |||
"display_name": "Aerospace engineering", | |||
"level": 1, | |||
"score": 0.0, | |||
"qid": "Q166129" | |||
}, | |||
{ | |||
"id": "https://openalex.org/c154945302", | |||
"wikidata": "https://www.wikidata.org/wiki/Q11660", | |||
"display_name": "Artificial intelligence", | |||
"level": 1, | |||
"score": 0.0, | |||
"qid": "Q166116" | |||
} | |||
], | |||
"corresponding_author_ids": [], | |||
"corresponding_institution_ids": [], | |||
"countries_distinct_count": 0, | |||
"counts_by_year": [ | |||
{ | |||
"year": 2023, | |||
"cited_by_count": 1 | |||
}, | |||
{ | |||
"year": 2022, | |||
"cited_by_count": 1 | |||
}, | |||
{ | |||
"year": 2021, | |||
"cited_by_count": 1 | |||
}, | |||
{ | |||
"year": 2020, | |||
"cited_by_count": 1 | |||
}, | |||
{ | |||
"year": 2017, | |||
"cited_by_count": 1 | |||
}, | |||
{ | |||
"year": 2016, | |||
"cited_by_count": 2 | |||
}, | |||
{ | |||
"year": 2014, | |||
"cited_by_count": 1 | |||
}, | |||
{ | |||
"year": 2013, | |||
"cited_by_count": 1 | |||
}, | |||
{ | |||
"year": 2012, | |||
"cited_by_count": 1 | |||
} | |||
], | |||
"created_date": "2016-06-24", | |||
"datasets": [], | |||
"display_name": "A Bayesian network to predict vulnerability to sea-level rise: data report", | |||
"doi": "https://doi.org/10.3133/ds601", | |||
"fwci": 1.256, | |||
"grants": [], | |||
"has_fulltext": false, | |||
"id": "https://openalex.org/W1537899036", | |||
"ids": { | |||
"openalex": "https://openalex.org/W1537899036", | |||
"doi": "https://doi.org/10.3133/ds601", | |||
"mag": "1537899036" | |||
}, | |||
"indexed_in": [ | |||
"crossref" | |||
], | |||
"institutions_distinct_count": 0, | |||
"is_paratext": false, | |||
"is_retracted": false, | |||
"keywords": [ | |||
{ | |||
"id": "https://openalex.org/keywords/vulnerability-index", | |||
"display_name": "Vulnerability index", | |||
"score": 0.61100644 | |||
}, | |||
{ | |||
"id": "https://openalex.org/keywords/vulnerability", | |||
"display_name": "Vulnerability (computing)", | |||
"score": 0.5748638 | |||
}, | |||
{ | |||
"id": "https://openalex.org/keywords/flood-inundation-modeling", | |||
"display_name": "Flood Inundation Modeling", | |||
"score": 0.509167 | |||
}, | |||
{ | |||
"id": "https://openalex.org/keywords/surface-water-mapping", | |||
"display_name": "Surface Water Mapping", | |||
"score": 0.501187 | |||
} | |||
], | |||
"language": "en", | |||
"locations": [ | |||
{ | |||
"is_oa": false, | |||
"landing_page_url": "https://doi.org/10.3133/ds601", | |||
"pdf_url": null, | |||
"source": { | |||
"id": "https://openalex.org/S4210176622", | |||
"display_name": "Data series", | |||
"issn_l": "2327-638X", | |||
"issn": [ | |||
"2327-638X", | |||
"2328-0271", | |||
"2333-0481" | |||
], | |||
"is_oa": false, | |||
"is_in_doaj": false, | |||
"is_core": false, | |||
"host_organization": "https://openalex.org/P4310319934", | |||
"host_organization_name": "United States Geological Survey", | |||
"host_organization_lineage": [ | |||
"https://openalex.org/P4310319934", | |||
"https://openalex.org/P4310316088" | |||
], | |||
"host_organization_lineage_names": [ | |||
"United States Geological Survey", | |||
"United States Department of the Interior" | |||
], | |||
"type": "journal" | |||
}, | |||
"license": null, | |||
"license_id": null, | |||
"version": null, | |||
"is_accepted": false, | |||
"is_published": false | |||
} | |||
], | |||
"locations_count": 1, | |||
"mesh": [], | |||
"ngrams_url": "https://api.openalex.org/works/W1537899036/ngrams", | |||
"open_access": { | |||
"is_oa": false, | |||
"oa_status": "closed", | |||
"oa_url": null, | |||
"any_repository_has_fulltext": false | |||
}, | |||
"primary_location": { | |||
"is_oa": false, | |||
"landing_page_url": "https://doi.org/10.3133/ds601", | |||
"pdf_url": null, | |||
"source": { | |||
"id": "https://openalex.org/S4210176622", | |||
"display_name": "Data series", | |||
"issn_l": "2327-638X", | |||
"issn": [ | |||
"2327-638X", | |||
"2328-0271", | |||
"2333-0481" | |||
], | |||
"is_oa": false, | |||
"is_in_doaj": false, | |||
"is_core": false, | |||
"host_organization": "https://openalex.org/P4310319934", | |||
"host_organization_name": "United States Geological Survey", | |||
"host_organization_lineage": [ | |||
"https://openalex.org/P4310319934", | |||
"https://openalex.org/P4310316088" | |||
], | |||
"host_organization_lineage_names": [ | |||
"United States Geological Survey", | |||
"United States Department of the Interior" | |||
], | |||
"type": "journal" | |||
}, | |||
"license": null, | |||
"license_id": null, | |||
"version": null, | |||
"is_accepted": false, | |||
"is_published": false | |||
}, | |||
"primary_topic": { | |||
"id": "https://openalex.org/T11303", | |||
"display_name": "Learning and Inference in Bayesian Networks", | |||
"score": 0.9579, | |||
"subfield": { | |||
"id": "https://openalex.org/subfields/1702", | |||
"display_name": "Artificial Intelligence" | |||
}, | |||
"field": { | |||
"id": "https://openalex.org/fields/17", | |||
"display_name": "Computer Science" | |||
}, | |||
"domain": { | |||
"id": "https://openalex.org/domains/3", | |||
"display_name": "Physical Sciences" | |||
} | |||
}, | |||
"publication_date": "2011-01-01", | |||
"publication_year": 2011, | |||
"referenced_works": [ | |||
"https://openalex.org/W131477853", | |||
"https://openalex.org/W1597635108", | |||
"https://openalex.org/W1755360231", | |||
"https://openalex.org/W1926307207", | |||
"https://openalex.org/W2016503334", | |||
"https://openalex.org/W2032907044", | |||
"https://openalex.org/W2273246575", | |||
"https://openalex.org/W238400514", | |||
"https://openalex.org/W2990260765", | |||
"https://openalex.org/W3083113686" | |||
], | |||
"referenced_works_count": 10, | |||
"related_works": [ | |||
"https://openalex.org/W4281974727", | |||
"https://openalex.org/W3176982875", | |||
"https://openalex.org/W3123121419", | |||
"https://openalex.org/W2958163785", | |||
"https://openalex.org/W2910693333", | |||
"https://openalex.org/W2739026834", | |||
"https://openalex.org/W2064128143", | |||
"https://openalex.org/W2038725307", | |||
"https://openalex.org/W1991192109", | |||
"https://openalex.org/W1578649630" | |||
], | |||
"sustainable_development_goals": [], | |||
"title": "A Bayesian network to predict vulnerability to sea-level rise: data report", | |||
"topics": [ | |||
{ | |||
"id": "https://openalex.org/T11303", | |||
"display_name": "Learning and Inference in Bayesian Networks", | |||
"score": 0.9579, | |||
"subfield": { | |||
"id": "https://openalex.org/subfields/1702", | |||
"display_name": "Artificial Intelligence" | |||
}, | |||
"field": { | |||
"id": "https://openalex.org/fields/17", | |||
"display_name": "Computer Science" | |||
}, | |||
"domain": { | |||
"id": "https://openalex.org/domains/3", | |||
"display_name": "Physical Sciences" | |||
} | |||
}, | |||
{ | |||
"id": "https://openalex.org/T10930", | |||
"display_name": "Global Flood Risk Assessment and Management", | |||
"score": 0.9547, | |||
"subfield": { | |||
"id": "https://openalex.org/subfields/2306", | |||
"display_name": "Global and Planetary Change" | |||
}, | |||
"field": { | |||
"id": "https://openalex.org/fields/23", | |||
"display_name": "Environmental Science" | |||
}, | |||
"domain": { | |||
"id": "https://openalex.org/domains/3", | |||
"display_name": "Physical Sciences" | |||
} | |||
}, | |||
{ | |||
"id": "https://openalex.org/T10757", | |||
"display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing", | |||
"score": 0.954, | |||
"subfield": { | |||
"id": "https://openalex.org/subfields/3305", | |||
"display_name": "Geography, Planning and Development" | |||
}, | |||
"field": { | |||
"id": "https://openalex.org/fields/33", | |||
"display_name": "Social Sciences" | |||
}, | |||
"domain": { | |||
"id": "https://openalex.org/domains/2", | |||
"display_name": "Social Sciences" | |||
} | |||
} | |||
], | |||
"type": "article", | |||
"type_crossref": "journal-article", | |||
"updated_date": "2024-08-10T09:15:26.821029", | |||
"versions": [], | |||
"qid": "Q62587" | |||
} | |||
} |
Latest revision as of 01:13, 15 August 2024
{
"USGS Publications Warehouse": { "schema": { "@context": "https://schema.org", "@type": "CreativeWork", "additionalType": "USGS Numbered Series", "name": "A Bayesian network to predict vulnerability to sea-level rise: data report", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "ds601", "url": "https://pubs.usgs.gov/publication/ds601" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70006066 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3133/ds601", "url": "https://doi.org/10.3133/ds601" } ], "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Data Series" } ], "datePublished": "2011", "dateModified": "2012-02-10", "abstract": "During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.", "description": "15 p.; Download of Data Files", "publisher": { "@type": "Organization", "name": "U.S. Geological Survey" }, "author": [ { "@type": "Person", "name": "Thieler, E. Robert rthieler@usgs.gov", "givenName": "E. Robert", "familyName": "Thieler", "email": "rthieler@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-4311-9717", "url": "https://orcid.org/0000-0003-4311-9717" }, "affiliation": [ { "@type": "Organization", "name": "Woods Hole Coastal and Marine Science Center", "url": "https://www.usgs.gov/centers/woods-hole-coastal-and-marine-science-center" } ] }, { "@type": "Person", "name": "Plant, Nathaniel G. nplant@usgs.gov", "givenName": "Nathaniel G.", "familyName": "Plant", "email": "nplant@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-5703-5672", "url": "https://orcid.org/0000-0002-5703-5672" }, "affiliation": [ { "@type": "Organization", "name": "St. Petersburg Coastal and Marine Science Center", "url": "https://www.usgs.gov/centers/spcmsc" }, { "@type": "Organization", "name": "Office of the AD Hazards", "url": "https://www.usgs.gov/mission-areas/natural-hazards" } ] }, { "@type": "Person", "name": "Gutierrez, Benjamin T.", "givenName": "Benjamin T.", "familyName": "Gutierrez" } ], "funder": [ { "@type": "Organization", "name": "Woods Hole Coastal and Marine Science Center", "url": "https://www.usgs.gov/centers/woods-hole-coastal-and-marine-science-center" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/4074035" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -82, 24 ], [ -82, 46 ], [ -66, 46 ], [ -66, 24 ], [ -82, 24 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": 35.0, "longitude": -74.0 } ] } ] } }, "OpenAlex": { "abstract_inverted_index": { "During": [ 0 ], "the": [ 1, 46, 55, 95, 103, 110, 129 ], "21st": [ 2 ], "century,": [ 3 ], "sea-level": [ 4, 69, 78 ], "rise": [ 5 ], "is": [ 6, 113, 132 ], "projected": [ 7 ], "to": [ 8, 35, 39, 51, 62, 68, 115, 134, 143 ], "have": [ 9 ], "a": [ 10, 58 ], "wide": [ 11 ], "range": [ 12 ], "of": [ 13, 57, 76, 94, 138 ], "effects": [ 14 ], "on": [ 15, 28 ], "coastal": [ 16, 41, 86, 124 ], "environments,": [ 17 ], "development,": [ 18 ], "and": [ 19, 53, 88, 123 ], "infrastructure.": [ 20 ], "Consequently,": [ 21 ], "there": [ 22 ], "has": [ 23 ], "been": [ 24 ], "an": [ 25 ], "increased": [ 26 ], "focus": [ 27 ], "developing": [ 29 ], "modeling": [ 30 ], "or": [ 31 ], "other": [ 32 ], "analytical": [ 33 ], "approaches": [ 34 ], "evaluate": [ 36, 54 ], "potential": [ 37 ], "impacts": [ 38 ], "inform": [ 40 ], "management.": [ 42 ], "This": [ 43 ], "report": [ 44 ], "provides": [ 45 ], "data": [ 47, 72 ], "that": [ 48 ], "were": [ 49 ], "used": [ 50, 114, 133 ], "develop": [ 52 ], "performance": [ 56 ], "Bayesian": [ 59, 111, 130 ], "network": [ 60, 112, 131 ], "designed": [ 61 ], "predict": [ 63 ], "long-term": [ 64 ], "shoreline": [ 65, 139 ], "change": [ 66, 140 ], "due": [ 67 ], "rise.": [ 70 ], "The": [ 71 ], "include": [ 73 ], "local": [ 74 ], "rates": [ 75 ], "relative": [ 77 ], "rise,": [ 79 ], "wave": [ 80 ], "height,": [ 81 ], "tide": [ 82 ], "range,": [ 83 ], "geomorphic": [ 84 ], "classification,": [ 85 ], "slope,": [ 87 ], "shoreline-change": [ 89 ], "rate": [ 90 ], "compiled": [ 91 ], "as": [ 92 ], "part": [ 93 ], "U.S.": [ 96, 104 ], "Geological": [ 97 ], "Survey": [ 98 ], "Coastal": [ 99 ], "Vulnerability": [ 100 ], "Index": [ 101 ], "for": [ 102 ], "Atlantic": [ 105 ], "coast.": [ 106 ], "In": [ 107 ], "this": [ 108, 127 ], "project,": [ 109 ], "define": [ 116 ], "relationships": [ 117 ], "among": [ 118 ], "driving": [ 119 ], "forces,": [ 120 ], "geologic": [ 121 ], "constraints,": [ 122 ], "responses.": [ 125 ], "Using": [ 126 ], "information,": [ 128 ], "make": [ 135 ], "probabilistic": [ 136 ], "predictions": [ 137 ], "in": [ 141 ], "response": [ 142 ], "different": [ 144 ], "future": [ 145 ], "sea-level-rise": [ 146 ], "scenarios.": [ 147 ] }, "apc_list": null, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5017821232", "display_name": "Benjamin T. Gutierrez", "orcid": "https://orcid.org/0000-0002-1879-7893" }, "institutions": [], "countries": [], "is_corresponding": false, "raw_author_name": "Benjamin T. Gutierrez", "raw_affiliation_strings": [], "affiliations": [] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5065618772", "display_name": "Nathaniel G. Plant", "orcid": "https://orcid.org/0000-0002-5703-5672" }, "institutions": [], "countries": [], "is_corresponding": false, "raw_author_name": "Nathaniel G. Plant", "raw_affiliation_strings": [], "affiliations": [] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5034875623", "display_name": "E. Robert Thieler", "orcid": "https://orcid.org/0000-0003-4311-9717" }, "institutions": [], "countries": [], "is_corresponding": false, "raw_author_name": "E. Robert Thieler", "raw_affiliation_strings": [], "affiliations": [] } ], "best_oa_location": null, "biblio": { "volume": null, "issue": null, "first_page": "1", "last_page": "15" }, "citation_normalized_percentile": { "value": 0.918579, "is_in_top_1_percent": false, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1537899036", "cited_by_count": 10, "cited_by_percentile_year": { "min": 86, "max": 87 }, "concepts": [ { "id": "https://openalex.org/c152382732", "wikidata": "https://www.wikidata.org/wiki/Q468756", "display_name": "Shore", "level": 2, "score": 0.82560223, "qid": null }, { "id": "https://openalex.org/c2781069661", "wikidata": "https://www.wikidata.org/wiki/Q7943568", "display_name": "Vulnerability index", "level": 3, "score": 0.61100644, "qid": null }, { "id": "https://openalex.org/c33724603", "wikidata": "https://www.wikidata.org/wiki/Q812540", "display_name": "Bayesian network", "level": 2, "score": 0.6017917, "qid": null }, { "id": "https://openalex.org/c95713431", "wikidata": "https://www.wikidata.org/wiki/Q631425", "display_name": "Vulnerability (computing)", "level": 2, "score": 0.5748638, "qid": null }, { "id": "https://openalex.org/c204323151", "wikidata": "https://www.wikidata.org/wiki/Q905424", "display_name": "Range (aeronautics)", "level": 2, "score": 0.55224824, "qid": null }, { "id": "https://openalex.org/c162284963", "wikidata": "https://www.wikidata.org/wiki/Q17106102", "display_name": "Submarine pipeline", "level": 2, "score": 0.5268606, "qid": null }, { "id": "https://openalex.org/c49937458", "wikidata": "https://www.wikidata.org/wiki/Q2599292", "display_name": "Probabilistic logic", "level": 2, "score": 0.5198427, "qid": null }, { "id": "https://openalex.org/c107673813", "wikidata": "https://www.wikidata.org/wiki/Q812534", "display_name": "Bayesian probability", "level": 2, "score": 0.47978336, "qid": null }, { "id": "https://openalex.org/c39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.43650407, "qid": "Q166085" }, { "id": "https://openalex.org/c74501621", "wikidata": "https://www.wikidata.org/wiki/Q125465", "display_name": "Sea level", "level": 2, "score": 0.41972393, "qid": null }, { "id": "https://openalex.org/c107826830", "wikidata": "https://www.wikidata.org/wiki/Q929380", "display_name": "Environmental resource management", "level": 1, "score": 0.41052985, "qid": "Q226238" }, { "id": "https://openalex.org/c111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 0.39805084, "qid": "Q166123" }, { "id": "https://openalex.org/c132651083", "wikidata": "https://www.wikidata.org/wiki/Q7942", "display_name": "Climate change", "level": 2, "score": 0.39435172, "qid": "Q169118" }, { "id": "https://openalex.org/c205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.3710327, "qid": "Q158983" }, { "id": "https://openalex.org/c100970517", "wikidata": "https://www.wikidata.org/wiki/Q52107", "display_name": "Physical geography", "level": 1, "score": 0.3344472, "qid": "Q226297" }, { "id": "https://openalex.org/c41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.27604455, "qid": "Q158969" }, { "id": "https://openalex.org/c127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.27271518, "qid": "Q158984" }, { "id": "https://openalex.org/c119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 0.10123065, "qid": "Q169132" }, { "id": "https://openalex.org/c127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.10025078, "qid": "Q158977" }, { "id": "https://openalex.org/c38652104", "wikidata": "https://www.wikidata.org/wiki/Q3510521", "display_name": "Computer security", "level": 1, "score": 0.0, "qid": "Q226217" }, { "id": "https://openalex.org/c146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 0.0, "qid": "Q166129" }, { "id": "https://openalex.org/c154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.0, "qid": "Q166116" } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 0, "counts_by_year": [ { "year": 2023, "cited_by_count": 1 }, { "year": 2022, "cited_by_count": 1 }, { "year": 2021, "cited_by_count": 1 }, { "year": 2020, "cited_by_count": 1 }, { "year": 2017, "cited_by_count": 1 }, { "year": 2016, "cited_by_count": 2 }, { "year": 2014, "cited_by_count": 1 }, { "year": 2013, "cited_by_count": 1 }, { "year": 2012, "cited_by_count": 1 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "A Bayesian network to predict vulnerability to sea-level rise: data report", "doi": "https://doi.org/10.3133/ds601", "fwci": 1.256, "grants": [], "has_fulltext": false, "id": "https://openalex.org/W1537899036", "ids": { "openalex": "https://openalex.org/W1537899036", "doi": "https://doi.org/10.3133/ds601", "mag": "1537899036" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 0, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/vulnerability-index", "display_name": "Vulnerability index", "score": 0.61100644 }, { "id": "https://openalex.org/keywords/vulnerability", "display_name": "Vulnerability (computing)", "score": 0.5748638 }, { "id": "https://openalex.org/keywords/flood-inundation-modeling", "display_name": "Flood Inundation Modeling", "score": 0.509167 }, { "id": "https://openalex.org/keywords/surface-water-mapping", "display_name": "Surface Water Mapping", "score": 0.501187 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.3133/ds601", "pdf_url": null, "source": { "id": "https://openalex.org/S4210176622", "display_name": "Data series", "issn_l": "2327-638X", "issn": [ "2327-638X", "2328-0271", "2333-0481" ], "is_oa": false, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/P4310319934", "host_organization_name": "United States Geological Survey", "host_organization_lineage": [ "https://openalex.org/P4310319934", "https://openalex.org/P4310316088" ], "host_organization_lineage_names": [ "United States Geological Survey", "United States Department of the Interior" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W1537899036/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.3133/ds601", "pdf_url": null, "source": { "id": "https://openalex.org/S4210176622", "display_name": "Data series", "issn_l": "2327-638X", "issn": [ "2327-638X", "2328-0271", "2333-0481" ], "is_oa": false, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/P4310319934", "host_organization_name": "United States Geological Survey", "host_organization_lineage": [ "https://openalex.org/P4310319934", "https://openalex.org/P4310316088" ], "host_organization_lineage_names": [ "United States Geological Survey", "United States Department of the Interior" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T11303", "display_name": "Learning and Inference in Bayesian Networks", "score": 0.9579, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2011-01-01", "publication_year": 2011, "referenced_works": [ "https://openalex.org/W131477853", "https://openalex.org/W1597635108", "https://openalex.org/W1755360231", "https://openalex.org/W1926307207", "https://openalex.org/W2016503334", "https://openalex.org/W2032907044", "https://openalex.org/W2273246575", "https://openalex.org/W238400514", "https://openalex.org/W2990260765", "https://openalex.org/W3083113686" ], "referenced_works_count": 10, "related_works": [ "https://openalex.org/W4281974727", "https://openalex.org/W3176982875", "https://openalex.org/W3123121419", "https://openalex.org/W2958163785", "https://openalex.org/W2910693333", "https://openalex.org/W2739026834", "https://openalex.org/W2064128143", "https://openalex.org/W2038725307", "https://openalex.org/W1991192109", "https://openalex.org/W1578649630" ], "sustainable_development_goals": [], "title": "A Bayesian network to predict vulnerability to sea-level rise: data report", "topics": [ { "id": "https://openalex.org/T11303", "display_name": "Learning and Inference in Bayesian Networks", "score": 0.9579, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "score": 0.9547, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10757", "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing", "score": 0.954, "subfield": { "id": "https://openalex.org/subfields/3305", "display_name": "Geography, Planning and Development" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-10T09:15:26.821029", "versions": [], "qid": "Q62587" }
}