Item talk:Q58478: Difference between revisions
(Added abstract and other texts to publication item's discussion page for reference) |
(Wrote fresh schema.org document to item wiki page) |
||
Line 1: | Line 1: | ||
{"@context": "https://schema.org", "@type": "CreativeWork", "additionalType": "USGS Numbered Series", "name": "Simulated effects of groundwater withdrawals from aquifers in Ocean County and vicinity, New Jersey", "identifier": [{"@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "sir20165035", "url": "https://pubs.usgs.gov/publication/sir20165035"}, {"@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70177683}, {"@type": "PropertyValue", "propertyID": "DOI", "value": "10.3133/sir20165035", "url": "https://doi.org/10.3133/sir20165035"}], "inLanguage": "en", "isPartOf": [{"@type": "CreativeWorkSeries", "name": "Scientific Investigations Report"}], "datePublished": "2016", "dateModified": "2016-12-16", "abstract": "Rapid population growth since the 1930s in Ocean County and vicinity, New Jersey, has placed increasing demands upon the area\u2019s freshwater resources. To examine effects of groundwater withdrawals, a three-dimensional groundwater-flow model was developed to simulate the groundwater-flow systems of five area aquifers: the unconfined Kirkwood-Cohansey aquifer system and Vincentown aquifer, and three confined aquifers\u2014 the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, and the Piney Point aquifer. The influence of withdrawals is evaluated by using transient groundwater-flow model simulations that incorporate three withdrawal schemes. These are (1) no-withdrawal conditions; (2) 2000\u201303 withdrawal conditions, using reported monthly withdrawals at all production wells from January 2000 through December 2003; and (3) maximum-allocation withdrawal conditions using the maximum withdrawal allowed by New Jersey Department of Environmental Protection permits at each well. Particle tracking analysis, using results from model simulations, delineated particle flow paths from production wells to the point of recharge, and estimated particle travel times.Compared with no-withdrawal conditions, 2000\u201303 withdrawal conditions reduced the amount of groundwater flow out of the Kirkwood-Cohansey aquifer system into streams, increased the net flow of water into other layers, reduced net flow into or out of storage, and reduced flow from the Kirkwood-Cohansey aquifer system to constant head cells.Freshwater discharging to the Barnegat Bay-Little Egg Harbor estuary from streams and groundwater is essential to maintaining the ecology of the bay. Examination of selected stress periods indicates that simulated base flow in streams flowing into the Barnegat Bay-Little Egg Harbor estuary is reduced by as much as 49 cubic feet per second for 2000 to 2003 withdrawal conditions when compared with no-withdrawal conditions.In the three confined aquifers, water levels during periods of low recharge and high withdrawals, and high recharge and low withdrawals, were examined to determine seasonal effects on the confined flow systems. The simulated potentiometric surface of the Rio Grande water-bearing zone and the Atlantic City 800-foot sand during selected stress periods indicates substantial declines from no-withdrawal conditions to 2000\u201303 conditions as a result of groundwater withdrawals. Cones of depression in Toms River Township, Seaside Heights and Seaside Park Boroughs, and Barnegat Light Borough developed in the potentiometric surface of the Piney Point aquifer in response to withdrawals.Maximum-allocation withdrawals decreased flow out of the Kirkwood-Cohansey aquifer system to constant head cells, increased flow out of the aquifer system to adjacent and lower layers, and reduced groundwater discharge to streams when compared with 2000\u201303 withdrawal conditions. Increases in withdrawals from the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, and the Piney Point aquifer result in an increase in simulated net groundwater flow into these aquifers. Base-flow reduction from 2000\u201303 conditions to maximum-allocation conditions of 25 to 29 cubic feet per second in all streams draining to the Barnegat Bay-Little Egg Harbor also is indicated. Potentiometric surfaces of the Rio Grande water-bearing zone, Atlantic City 800-foot sand, and the Piney Point aquifer during two stress periods of simulated maximum-allocation withdrawal conditions indicated the expansion of several cones of depression developed during 2000\u201303 withdrawals.Simulation of average 2000\u201303 withdrawal conditions indicated the extent to which the groundwater-flow system is susceptible to potential saltwater intrusion into near-shore wells. Travel time from recharge to discharge location ranged from 11 to approximately 50,700 years in near-shore Kirkwood-Cohansey aquifer system wells. Those in Seaside Heights Borough, in Island Beach State Park (Berkeley Township), and in Ship Bottom Borough have particle travel times from 140 to 12,000 years and flow paths that originated under Barnegat Bay or the Atlantic Ocean from the simulation of average maximum-allocation withdrawal conditions.Travel time along flow paths to wells screened in the Rio Grande water-bearing zone and the Atlantic City 800-foot sand from recharge to discharge point ranged from nearly 530 years to greater than 3.73 million years from the simulation of average 2000\u201303 withdrawal conditions. Particle tracking indicated that most wells screened in these aquifers derived a large part of their recharge from the Oswego River Basin, with a small portion of flow originating either beneath Barnegat Bay or to the east beneath the Atlantic Ocean. Travel time along flow paths that start beneath either Barnegat Bay or the Atlantic Ocean ranged from 2,300 to approximately 134,000 years from the simulation of average maximum-allocation withdrawal conditions.\"", "description": "x, 77 p.", "publisher": {"@type": "Organization", "name": "U.S. Geological Survey"}, "author": [{"@type": "Person", "name": "Voronin, Lois M. lvoronin@usgs.gov", "givenName": "Lois M.", "familyName": "Voronin", "email": "lvoronin@usgs.gov", "identifier": {"@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-1064-1675", "url": "https://orcid.org/0000-0002-1064-1675"}, "affiliation": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}]}, {"@type": "Person", "name": "Cauller, Stephen J. sjcaulle@usgs.gov", "givenName": "Stephen J.", "familyName": "Cauller", "email": "sjcaulle@usgs.gov", "identifier": {"@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-1823-8813", "url": "https://orcid.org/0000-0002-1823-8813"}, "affiliation": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}]}, {"@type": "Person", "name": "Chepiga, Mary M. mchepiga@usgs.gov", "givenName": "Mary M.", "familyName": "Chepiga", "email": "mchepiga@usgs.gov", "affiliation": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}]}], "funder": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}], "spatialCoverage": [{"@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/6252001"}, {"@type": "Place", "additionalType": "state", "name": "New Jersey", "url": "https://geonames.org/5101760"}, {"@type": "Place", "additionalType": "state", "name": "Ocean County", "url": "https://geonames.org/4503355"}, {"@type": "Place", "geo": [{"@type": "GeoShape", "additionalProperty": {"@type": "PropertyValue", "name": "GeoJSON", "value": {"type": "FeatureCollection", "features": [{"type": "Feature", "properties": {}, "geometry": {"type": "Polygon", "coordinates": [[[-74.03549194335938, 40.10118506258701], [-74.04647827148438, 40.10538669840983], [-74.0643310546875, 40.092781012494065], [-74.09042358398438, 40.10013461308659], [-74.08905029296875, 40.12219064672336], [-74.19754028320312, 40.20195268954057], [-74.33212280273438, 40.22397567550632], [-74.55459594726562, 40.08122374895389], [-74.53399658203125, 39.68393975392731], [-74.45709228515625, 39.577114881737586], [-74.4158935546875, 39.536880650643056], [-74.410400390625, 39.49874248613119], [-74.3609619140625, 39.487084981687495], [-74.32525634765625, 39.49556336059472], [-74.2401123046875, 39.46058338433589], [-74.02999877929686, 39.74521015328692], [-73.9764404296875, 40.091730433255], [-74.03549194335938, 40.10118506258701]]]}}]}}}, {"@type": "GeoCoordinates", "latitude": 39.86579913408304, "longitude": -74.28358966652029}]}]} | |||
Rapid population growth since the 1930s in Ocean County and vicinity, New Jersey, has placed increasing demands upon the | |||
Compared with no-withdrawal conditions, | |||
Freshwater discharging to the Barnegat Bay-Little Egg Harbor estuary from streams and groundwater is essential to maintaining the ecology of the bay. Examination of selected stress periods indicates that simulated base flow in streams flowing into the Barnegat Bay-Little Egg Harbor estuary is reduced by as much as 49 cubic feet per second for 2000 to 2003 withdrawal conditions when compared with no-withdrawal conditions. | |||
In the three confined aquifers, water levels during periods of low recharge and high withdrawals, and high recharge and low withdrawals, were examined to determine seasonal effects on the confined flow systems. The simulated potentiometric surface of the Rio Grande water-bearing zone and the Atlantic City 800-foot sand during selected stress periods indicates substantial declines from no-withdrawal conditions to | |||
Maximum-allocation withdrawals decreased flow out of the Kirkwood-Cohansey aquifer system to constant head cells, increased flow out of the aquifer system to adjacent and lower layers, and reduced groundwater discharge to streams when compared with | |||
Simulation of average | |||
Travel time along flow paths to wells screened in the Rio Grande water-bearing zone and the Atlantic City 800-foot sand from recharge to discharge point ranged from nearly 530 years to greater than 3.73 million years from the simulation of average | |||
Revision as of 20:17, 15 July 2024
{"@context": "https://schema.org", "@type": "CreativeWork", "additionalType": "USGS Numbered Series", "name": "Simulated effects of groundwater withdrawals from aquifers in Ocean County and vicinity, New Jersey", "identifier": [{"@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "sir20165035", "url": "https://pubs.usgs.gov/publication/sir20165035"}, {"@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70177683}, {"@type": "PropertyValue", "propertyID": "DOI", "value": "10.3133/sir20165035", "url": "https://doi.org/10.3133/sir20165035"}], "inLanguage": "en", "isPartOf": [{"@type": "CreativeWorkSeries", "name": "Scientific Investigations Report"}], "datePublished": "2016", "dateModified": "2016-12-16", "abstract": "Rapid population growth since the 1930s in Ocean County and vicinity, New Jersey, has placed increasing demands upon the area\u2019s freshwater resources. To examine effects of groundwater withdrawals, a three-dimensional groundwater-flow model was developed to simulate the groundwater-flow systems of five area aquifers: the unconfined Kirkwood-Cohansey aquifer system and Vincentown aquifer, and three confined aquifers\u2014 the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, and the Piney Point aquifer. The influence of withdrawals is evaluated by using transient groundwater-flow model simulations that incorporate three withdrawal schemes. These are (1) no-withdrawal conditions; (2) 2000\u201303 withdrawal conditions, using reported monthly withdrawals at all production wells from January 2000 through December 2003; and (3) maximum-allocation withdrawal conditions using the maximum withdrawal allowed by New Jersey Department of Environmental Protection permits at each well. Particle tracking analysis, using results from model simulations, delineated particle flow paths from production wells to the point of recharge, and estimated particle travel times.Compared with no-withdrawal conditions, 2000\u201303 withdrawal conditions reduced the amount of groundwater flow out of the Kirkwood-Cohansey aquifer system into streams, increased the net flow of water into other layers, reduced net flow into or out of storage, and reduced flow from the Kirkwood-Cohansey aquifer system to constant head cells.Freshwater discharging to the Barnegat Bay-Little Egg Harbor estuary from streams and groundwater is essential to maintaining the ecology of the bay. Examination of selected stress periods indicates that simulated base flow in streams flowing into the Barnegat Bay-Little Egg Harbor estuary is reduced by as much as 49 cubic feet per second for 2000 to 2003 withdrawal conditions when compared with no-withdrawal conditions.In the three confined aquifers, water levels during periods of low recharge and high withdrawals, and high recharge and low withdrawals, were examined to determine seasonal effects on the confined flow systems. The simulated potentiometric surface of the Rio Grande water-bearing zone and the Atlantic City 800-foot sand during selected stress periods indicates substantial declines from no-withdrawal conditions to 2000\u201303 conditions as a result of groundwater withdrawals. Cones of depression in Toms River Township, Seaside Heights and Seaside Park Boroughs, and Barnegat Light Borough developed in the potentiometric surface of the Piney Point aquifer in response to withdrawals.Maximum-allocation withdrawals decreased flow out of the Kirkwood-Cohansey aquifer system to constant head cells, increased flow out of the aquifer system to adjacent and lower layers, and reduced groundwater discharge to streams when compared with 2000\u201303 withdrawal conditions. Increases in withdrawals from the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, and the Piney Point aquifer result in an increase in simulated net groundwater flow into these aquifers. Base-flow reduction from 2000\u201303 conditions to maximum-allocation conditions of 25 to 29 cubic feet per second in all streams draining to the Barnegat Bay-Little Egg Harbor also is indicated. Potentiometric surfaces of the Rio Grande water-bearing zone, Atlantic City 800-foot sand, and the Piney Point aquifer during two stress periods of simulated maximum-allocation withdrawal conditions indicated the expansion of several cones of depression developed during 2000\u201303 withdrawals.Simulation of average 2000\u201303 withdrawal conditions indicated the extent to which the groundwater-flow system is susceptible to potential saltwater intrusion into near-shore wells. Travel time from recharge to discharge location ranged from 11 to approximately 50,700 years in near-shore Kirkwood-Cohansey aquifer system wells. Those in Seaside Heights Borough, in Island Beach State Park (Berkeley Township), and in Ship Bottom Borough have particle travel times from 140 to 12,000 years and flow paths that originated under Barnegat Bay or the Atlantic Ocean from the simulation of average maximum-allocation withdrawal conditions.Travel time along flow paths to wells screened in the Rio Grande water-bearing zone and the Atlantic City 800-foot sand from recharge to discharge point ranged from nearly 530 years to greater than 3.73 million years from the simulation of average 2000\u201303 withdrawal conditions. Particle tracking indicated that most wells screened in these aquifers derived a large part of their recharge from the Oswego River Basin, with a small portion of flow originating either beneath Barnegat Bay or to the east beneath the Atlantic Ocean. Travel time along flow paths that start beneath either Barnegat Bay or the Atlantic Ocean ranged from 2,300 to approximately 134,000 years from the simulation of average maximum-allocation withdrawal conditions.\"", "description": "x, 77 p.", "publisher": {"@type": "Organization", "name": "U.S. Geological Survey"}, "author": [{"@type": "Person", "name": "Voronin, Lois M. lvoronin@usgs.gov", "givenName": "Lois M.", "familyName": "Voronin", "email": "lvoronin@usgs.gov", "identifier": {"@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-1064-1675", "url": "https://orcid.org/0000-0002-1064-1675"}, "affiliation": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}]}, {"@type": "Person", "name": "Cauller, Stephen J. sjcaulle@usgs.gov", "givenName": "Stephen J.", "familyName": "Cauller", "email": "sjcaulle@usgs.gov", "identifier": {"@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-1823-8813", "url": "https://orcid.org/0000-0002-1823-8813"}, "affiliation": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}]}, {"@type": "Person", "name": "Chepiga, Mary M. mchepiga@usgs.gov", "givenName": "Mary M.", "familyName": "Chepiga", "email": "mchepiga@usgs.gov", "affiliation": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}]}], "funder": [{"@type": "Organization", "name": "New Jersey Water Science Center", "url": "https://www.usgs.gov/centers/new-jersey-water-science-center"}], "spatialCoverage": [{"@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/6252001"}, {"@type": "Place", "additionalType": "state", "name": "New Jersey", "url": "https://geonames.org/5101760"}, {"@type": "Place", "additionalType": "state", "name": "Ocean County", "url": "https://geonames.org/4503355"}, {"@type": "Place", "geo": [{"@type": "GeoShape", "additionalProperty": {"@type": "PropertyValue", "name": "GeoJSON", "value": {"type": "FeatureCollection", "features": [{"type": "Feature", "properties": {}, "geometry": {"type": "Polygon", "coordinates": [[[-74.03549194335938, 40.10118506258701], [-74.04647827148438, 40.10538669840983], [-74.0643310546875, 40.092781012494065], [-74.09042358398438, 40.10013461308659], [-74.08905029296875, 40.12219064672336], [-74.19754028320312, 40.20195268954057], [-74.33212280273438, 40.22397567550632], [-74.55459594726562, 40.08122374895389], [-74.53399658203125, 39.68393975392731], [-74.45709228515625, 39.577114881737586], [-74.4158935546875, 39.536880650643056], [-74.410400390625, 39.49874248613119], [-74.3609619140625, 39.487084981687495], [-74.32525634765625, 39.49556336059472], [-74.2401123046875, 39.46058338433589], [-74.02999877929686, 39.74521015328692], [-73.9764404296875, 40.091730433255], [-74.03549194335938, 40.10118506258701]]]}}]}}}, {"@type": "GeoCoordinates", "latitude": 39.86579913408304, "longitude": -74.28358966652029}]}]}