Item talk:Q139683: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5039730099", "orcid": "https://orcid.org/0000-0002-2583-1199", "display_name": "Benjamin R. K. Runkle", "display_name_alternatives": [ "B. R. K. Runkle", "Benjamin Reade Runkle", "Benjamin Reade Kreps Runkle", "Benjamine Runkle", "Benjamin R. K. Runkle", "Benjamin R. Runkle", "Gillian Simpson", "B. Runkle", "Benjamin Runkle", "B. R. Runkle" ],...") |
No edit summary |
||
Line 1,282: | Line 1,282: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5039730099" | "_id": "https://openalex.org/A5039730099" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-2583-1199", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-2583-1199", | |||
"givenName": "Benjamin Reade Kreps", | |||
"familyName": "Runkle", | |||
"address": { | |||
"addressCountry": "US", | |||
"@type": "PostalAddress" | |||
}, | |||
"alumniOf": { | |||
"@type": "Organization", | |||
"name": "University of California Berkeley", | |||
"alternateName": "Civil & Environmental Engineering", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "1438" | |||
} | |||
}, | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Arkansas Fayetteville", | |||
"alternateName": "Biological & Agricultural Engineering", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "3341" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100005369", | |||
"name": "American Geophysical Union", | |||
"alternateName": "Biogeosciences" | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "American Society of Agricultural and Biological Engineers", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "211062" | |||
} | |||
} | |||
], | |||
"@reverse": { | |||
"funder": [ | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000104", | |||
"name": "National Aeronautics and Space Administration", | |||
"alternateName": "Ground observations of CO2 flux dynamics to support the ACT-America project", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "80nssc20k0923" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100006235", | |||
"name": "Lawrence Berkeley National Laboratory", | |||
"alternateName": "Platform for Multi-modal, Multi-scale Data Integration for Sustainable Agriculture", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "7540598" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000199", | |||
"name": "U.S. Department of Agriculture ARS", | |||
"alternateName": "Quantify Changes in Water Quality and Greenhouse Gas Emissions Due to Innovative Rice Production Practices", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "002803-00001a" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000199", | |||
"name": "U.S. Department of Agriculture ARS", | |||
"alternateName": "Energy partitioning, evapotranpiration, and CO2 exchange of the forage component of a silvopasture system", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "002902-00001a" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000199", | |||
"name": "U.S. Department of Agriculture NRCS", | |||
"alternateName": "Comparing three water-saving irrigation strategies in production-scale rice fields", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "002483-00001a" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000201", | |||
"name": "U.S. Department of the Interior USGS", | |||
"alternateName": "A network of evapotranspiration observation sites to constrain ET estimation methods and water availability models in the Mississippi Alluvial Plain", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "g20ac00448" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100006094", | |||
"name": "University of Delaware (subaward from USDA-NIFA)", | |||
"alternateName": "Closing the Si cycle in rice agroecosystems to sustainably control arsenic and cadmium uptake by rice grown under alternate wetting and drying (AWD)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "49553" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100017437", | |||
"name": "NASA Headquarters", | |||
"alternateName": "A national quantification of methane emissions from rice cultivation in the U.S.: integrating multi-source satellite data and process-based modeling" | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000084", | |||
"name": "Directorate for Engineering", | |||
"alternateName": "CAREER: Developing climate-smart irrigation strategies for rice agriculture in Arkansas", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "1752083" | |||
} | |||
} | |||
], | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41598-024-64616-1", | |||
"name": "Belowground plant allocation regulates rice methane emissions from degraded peat soils", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41598-024-64616-1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2024gh001081", | |||
"name": "Mitigating Toxic Metal Exposure Through Leafy Greens: A Comprehensive Review Contrasting Cadmium and Lead in Spinach", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2024gh001081" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2024.110069", | |||
"name": "The effects of alternate wetting and drying irrigation on water use efficiency in Mid-South rice", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2024.110069" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1073/pnas.2318505121", | |||
"name": "We need a solid scientific basis for nature-based climate solutions in the United States", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1073/pnas.2318505121" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/ad0925", | |||
"name": "Assessing the methane mitigation potential of innovative management in US rice production", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/ad0925" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.compag.2023.107954", | |||
"name": "Deep learning solutions for mapping contour levee rice production systems from very high resolution imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.compag.2023.107954" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2022.113335", | |||
"name": "Paddy rice methane emissions across Monsoon Asia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2022.113335" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jeq2.20444", | |||
"name": "Multiyear methane and nitrous oxide emissions in different irrigation management under long\u2010term continuous rice rotation in Arkansas", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jeq2.20444" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1186/s13036-022-00287-8", | |||
"name": "Review: biological engineering for nature-based climate solutions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1186/s13036-022-00287-8" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-022-34049-3", | |||
"name": "Vegetation type is an important predictor of the arctic summer land surface energy budget", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-022-34049-3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-19-3863-2022", | |||
"name": "Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-19-3863-2022" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10546-022-00703-y", | |||
"name": "Modification of a Wavelet-Based Method for Detecting Ebullitive Methane Fluxes in Eddy-Covariance Observations: Application at Two Rice Fields", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10546-022-00703-y" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/fpls.2022.716506", | |||
"name": "Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/fpls.2022.716506" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.16156", | |||
"name": "Informing Nature\u2010based Climate Solutions for the U.S. with the best\u2010available science", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.16156" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jag.2021.102631", | |||
"name": "The first fine-resolution mapping of contour-levee irrigation using deep Bi-Stream convolutional neural networks", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jag.2021.102631" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/fagro.2021.741557", | |||
"name": "Socio-Technical Changes for Sustainable Rice Production: Rice Husk Amendment, Conservation Irrigation, and System Changes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/fagro.2021.741557" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021gb006956", | |||
"name": "Covariation of Airborne Biogenic Tracers (CO\n 2\n , COS, and CO) Supports Stronger Than Expected Growing Season Photosynthetic Uptake in the Southeastern US", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021gb006956" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/essd-13-3607-2021", | |||
"name": "FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/essd-13-3607-2021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1021/acs.est.0c06421", | |||
"name": "An Ecosystem-Scale Flux Measurement Strategy to Assess Natural Climate Solutions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1021/acs.est.0c06421" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85102965345" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020ea001554", | |||
"name": "Rice Inundation Assessment Using Polarimetric UAVSAR Data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020ea001554" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85103291455" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2020.112180", | |||
"name": "Cropland mapping with L-band UAVSAR and development of NISAR products", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85097056723" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2020.112180" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jg006148", | |||
"name": "Once Upon a Time, in AmeriFlux", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jg006148" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85099968437" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jclepro.2021.128135", | |||
"name": "Environmental sustainability assessment of rice management practices using decision support tools", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85109837876" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jclepro.2021.128135" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2021.108528", | |||
"name": "Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2021.108528" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85109612362" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15661", | |||
"name": "Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85106753544" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15661" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2021.126080", | |||
"name": "Impacts of alternate wetting and drying and delayed flood rice irrigation on growing season evapotranspiration", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2021.126080" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85102408086" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-021-22452-1", | |||
"name": "Substantial hysteresis in emergent temperature sensitivity of global wetland CH<inf>4</inf> emissions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85104390097" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-021-22452-1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/abab34", | |||
"name": "The biophysical climate mitigation potential of boreal peatlands during the growing season", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/abab34" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85094183844" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/su12176822", | |||
"name": "Simulating Soybean\u2013Rice Rotation and Irrigation Strategies in Arkansas, USA Using APEX", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85090598477" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/su12176822" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2020.124917", | |||
"name": "A new free-convection form to estimate sensible heat and latent heat fluxes for unstable cases", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2020.124917" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85082804005" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-020-0763-7", | |||
"name": "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-020-0763-7" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85084517478" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10546-020-00520-1", | |||
"name": "Friction-Velocity Estimates Using the Trace of a Scalar and the Mean Wind Speed", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85082818803" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10546-020-00520-1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agee.2019.106813", | |||
"name": "Eddy covariance measurements of carbon dioxide and water fluxes in US mid-south cotton production", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85077457606" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agee.2019.106813" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-11643", | |||
"name": "Greenhouse gas emissions mitigation with alternate wetting and drying irrigation of rice agriculture", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-11643" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-8991", | |||
"name": "Lateral carbon export from polygonal tundra catchments on Samoylov Island, Lena River Delta", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-8991" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/bams-d-18-0268.1", | |||
"name": "FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/bams-d-18-0268.1" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071603836" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2019.107763", | |||
"name": "Surface renewal measurements of H, \u03bbE and CO2 fluxes over two different agricultural systems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85072509998" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2019.107763" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2019.124030", | |||
"name": "Evaluating closed chamber evapotranspiration estimates against eddy covariance measurements in an arctic wetland", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2019.124030" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071691183" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2019.1601286", | |||
"name": "Automated mapping of rice fields using multi-year training sample normalization", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2019.1601286" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85064681827" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/essd-11-221-2019", | |||
"name": "A long-term (2002 to 2017) record of closed-path and open-path eddy covariance CO<sub>2</sub> net ecosystem exchange fluxes from the Siberian Arctic", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/essd-11-221-2019" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85061915192" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1021/acs.est.8b05535", | |||
"name": "Methane Emission Reductions from the Alternate Wetting and Drying of Rice Fields Detected Using the Eddy Covariance Method", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1021/acs.est.8b05535" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85059653285" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10500294.1", | |||
"name": "User-friendly Greehouse Gas calculators to assess water-saving practices in rice fields in Arkansas", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10500294.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2134/jeq2017.11.0445", | |||
"name": "Greenhouse Gas Emissions and Management Practices that Affect Emissions in US Rice Systems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85046758409" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2134/jeq2017.11.0445" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-14-3715-2017", | |||
"name": "Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-14-3715-2017" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85027332740" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2134/ael2017.01.0003", | |||
"name": "Delta-Flux: An Eddy Covariance Network for a Climate-Smart Lower Mississippi Basin", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2134/ael2017.01.0003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85063155251" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.10710", | |||
"name": "Dissolved organic matter dynamics during the spring snowmelt at a boreal river valley mire complex in Northwest Russia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949976831" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.10710" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-9-915-2016", | |||
"name": "Upscaling methane emission hotspots in boreal peatlands", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84960105245" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-9-915-2016" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-3-319-26866-8_2", | |||
"name": "Sustainable internationalization? Measuring the diversity of internationalization at higher education institutions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-3-319-26866-8_2" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071466398" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-12-5689-2015", | |||
"name": "Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-12-5689-2015" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84943749205" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2014.05.060", | |||
"name": "Application of high-resolution spectral absorbance measurements to determine dissolved organic carbon concentration in remote areas", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2014.05.060" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84904861600" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/9/4/045008", | |||
"name": "Seasonal variability as a source of uncertainty in the West Siberian regional CH<inf>4</inf> flux upscaling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84928096296" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/9/4/045008" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s13157-014-0576-4", | |||
"name": "Spatial Variations in Pore-Water Biogeochemistry Greatly Exceed Temporal Changes During Baseflow Conditions in a Boreal River Valley Mire Complex, Northwest Russia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84906029031" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s13157-014-0576-4" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2014.01.056", | |||
"name": "The surface energy balance and its drivers in a boreal peatland fen of northwestern Russia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2014.01.056" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84894283084" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-10-1337-2013", | |||
"name": "Bulk partitioning the growing season net ecosystem exchange of CO <inf>2</inf> in Siberian tundra reveals the seasonality of it carbon sequestration strength", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-10-1337-2013" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84883330279" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10040-012-0933-4", | |||
"name": "Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia),Variabilit\u00e9 saisonni\u00e8re et spatiale du bilan d'eau de la toundra polygonale: Delta de la rivi\u00e8re Lena, Nord Sib\u00e9rien (Russie)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10040-012-0933-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84873516292" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10546-011-9689-y", | |||
"name": "Attenuation Correction Procedures for Water Vapour Fluxes from Closed-Path Eddy-Covariance Systems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84856385717" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10546-011-9689-y" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2010jg001522", | |||
"name": "Carbon dioxide exchange of a pepperweed (Lepidium latifolium L.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration?", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79952285021" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2010jg001522" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2011.02.011", | |||
"name": "Tracking the structural and functional development of a perennial pepperweed (Lepidium latifolium L.) infestation using a multi-year archive of webcam imagery and eddy covariance measurements", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2011.02.011" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79955638345" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.enpol.2008.06.039", | |||
"name": "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.enpol.2008.06.039" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-57149094844" | |||
} | |||
] | |||
} | |||
] | |||
}, | |||
"url": [ | |||
"https://runkle.uark.edu/", | |||
"https://twitter.com/drbenrunkle", | |||
"https://scholar.google.com/citations?user=sezexyoaaaa&user=sezexyoaaaaj" | |||
], | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "24779753600" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Loop profile", | |||
"value": "935088" | |||
} | |||
] | |||
} | } | ||
} | } |
Latest revision as of 20:24, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5039730099", "orcid": "https://orcid.org/0000-0002-2583-1199", "display_name": "Benjamin R. K. Runkle", "display_name_alternatives": [ "B. R. K. Runkle", "Benjamin Reade Runkle", "Benjamin Reade Kreps Runkle", "Benjamine Runkle", "Benjamin R. K. Runkle", "Benjamin R. Runkle", "Gillian Simpson", "B. Runkle", "Benjamin Runkle", "B. R. Runkle" ], "works_count": 184, "cited_by_count": 1801, "summary_stats": { "2yr_mean_citedness": 6.344827586206897, "h_index": 24, "i10_index": 40 }, "ids": { "openalex": "https://openalex.org/A5039730099", "orcid": "https://orcid.org/0000-0002-2583-1199", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=24779753600&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I78715868", "ror": "https://ror.org/05jbt9m15", "display_name": "University of Arkansas at Fayetteville", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I78715868" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I149218723", "ror": "https://ror.org/017shr829", "display_name": "LI-COR Biosciences (United States)", "country_code": "US", "type": "company", "lineage": [ "https://openalex.org/I149218723" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I137902535", "ror": "https://ror.org/04tj63d06", "display_name": "North Carolina State University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I137902535" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I72951846", "ror": "https://ror.org/05dk0ce17", "display_name": "Washington State University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I72951846" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I1325736334", "ror": "https://ror.org/01h5tnr73", "display_name": "Battelle", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I1325736334" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I141945490", "ror": "https://ror.org/03rmrcq20", "display_name": "University of British Columbia", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I141945490" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I193662353", "ror": "https://ror.org/04pp8hn57", "display_name": "Utrecht University", "country_code": "NL", "type": "education", "lineage": [ "https://openalex.org/I193662353" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I207601951", "ror": "https://ror.org/04ar4g412", "display_name": "Malone University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I207601951" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I161318765", "ror": "https://ror.org/046rm7j60", "display_name": "University of California, Los Angeles", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I161318765" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I86501945", "ror": "https://ror.org/01sbq1a82", "display_name": "University of Delaware", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I86501945" ] }, "years": [ 2023 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I78715868", "ror": "https://ror.org/05jbt9m15", "display_name": "University of Arkansas at Fayetteville", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I78715868" ] } ], "topics": [ { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 42, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 28, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 28, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 28, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12045", "display_name": "Rice Water Management and Productivity Enhancement", "count": 20, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 18, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 16, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12724", "display_name": "Integrated Management of Water, Energy, and Food Resources", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "count": 7, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11371", "display_name": "Urban Wind Environment and Air Quality Modeling", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10616", "display_name": "Precision Agriculture Technologies", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11404", "display_name": "Deficit Irrigation for Agricultural Water Management", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12431", "display_name": "Genetic and Agricultural Studies of Sugarcane", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12383", "display_name": "Aeolian Geomorphology and Wind Erosion Dynamics", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12475", "display_name": "Strigolactone Signaling in Plant Interactions", "count": 3, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10032", "display_name": "Marine Biogeochemistry and Ecosystem Dynamics", "count": 3, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 0.0002303, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13530", "display_name": "Climate Change and Environmental Impact", "value": 0.0001849, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.000166, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 0.0001395, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12045", "display_name": "Rice Water Management and Productivity Enhancement", "value": 0.0001302, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 0.0001233, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11835", "display_name": "Sustainability Education in Higher Education Institutions", "value": 8.35e-05, "subfield": { "id": "https://openalex.org/subfields/3304", "display_name": "Education" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "value": 8.1e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12724", "display_name": "Integrated Management of Water, Energy, and Food Resources", "value": 7.16e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 7.06e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12431", "display_name": "Genetic and Agricultural Studies of Sugarcane", "value": 5.93e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10616", "display_name": "Precision Agriculture Technologies", "value": 5.87e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 4.91e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12896", "display_name": "Evaluation of Environmental Impact in Agriculture", "value": 4.9e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "value": 4.83e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11404", "display_name": "Deficit Irrigation for Agricultural Water Management", "value": 4.5e-05, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12742", "display_name": "Safflower and Sunflower Cultivation and Utilization", "value": 3.7e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12344", "display_name": "Role of Silicon in Plant Biology and Ecology", "value": 3.47e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "value": 3.33e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12383", "display_name": "Aeolian Geomorphology and Wind Erosion Dynamics", "value": 3.25e-05, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13009", "display_name": "Agroforestry Systems and Biodiversity Enhancement", "value": 3.14e-05, "subfield": { "id": "https://openalex.org/subfields/1107", "display_name": "Forestry" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T14329", "display_name": "Climate Change and Environmental Science", "value": 3.01e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "value": 2.88e-05, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11371", "display_name": "Urban Wind Environment and Air Quality Modeling", "value": 2.75e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "value": 2.67e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 85.3 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 83.2 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 80.4 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 78.3 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 65.8 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 53.8 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 47.3 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 43.5 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 42.9 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 42.4 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 38.6 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 37.0 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 37.0 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 35.9 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 30.4 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 28.8 }, { "id": "https://openalex.org/C35187779", "wikidata": "https://www.wikidata.org/wiki/Q5336709", "display_name": "Eddy covariance", "level": 3, "score": 28.3 }, { "id": "https://openalex.org/C91586092", "wikidata": "https://www.wikidata.org/wiki/Q757520", "display_name": "Atmospheric sciences", "level": 1, "score": 28.3 }, { "id": "https://openalex.org/C6557445", "wikidata": "https://www.wikidata.org/wiki/Q173113", "display_name": "Agronomy", "level": 1, "score": 25.5 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 23.9 }, { "id": "https://openalex.org/C192562407", "wikidata": "https://www.wikidata.org/wiki/Q228736", "display_name": "Materials science", "level": 0, "score": 22.3 }, { "id": "https://openalex.org/C47737302", "wikidata": "https://www.wikidata.org/wiki/Q167336", "display_name": "Greenhouse gas", "level": 2, "score": 20.7 } ], "counts_by_year": [ { "year": 2024, "works_count": 22, "cited_by_count": 353 }, { "year": 2023, "works_count": 17, "cited_by_count": 491 }, { "year": 2022, "works_count": 9, "cited_by_count": 406 }, { "year": 2021, "works_count": 20, "cited_by_count": 290 }, { "year": 2020, "works_count": 14, "cited_by_count": 144 }, { "year": 2019, "works_count": 14, "cited_by_count": 97 }, { "year": 2018, "works_count": 14, "cited_by_count": 59 }, { "year": 2017, "works_count": 8, "cited_by_count": 60 }, { "year": 2016, "works_count": 10, "cited_by_count": 52 }, { "year": 2015, "works_count": 8, "cited_by_count": 57 }, { "year": 2014, "works_count": 10, "cited_by_count": 37 }, { "year": 2013, "works_count": 14, "cited_by_count": 22 }, { "year": 2012, "works_count": 5, "cited_by_count": 23 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5039730099", "updated_date": "2024-08-24T23:25:29.649026", "created_date": "2023-07-21", "_id": "https://openalex.org/A5039730099" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-2583-1199", "mainEntityOfPage": "https://orcid.org/0000-0002-2583-1199", "givenName": "Benjamin Reade Kreps", "familyName": "Runkle", "address": { "addressCountry": "US", "@type": "PostalAddress" }, "alumniOf": { "@type": "Organization", "name": "University of California Berkeley", "alternateName": "Civil & Environmental Engineering", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "1438" } }, "affiliation": [ { "@type": "Organization", "name": "University of Arkansas Fayetteville", "alternateName": "Biological & Agricultural Engineering", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "3341" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100005369", "name": "American Geophysical Union", "alternateName": "Biogeosciences" }, { "@type": "Organization", "name": "American Society of Agricultural and Biological Engineers", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "211062" } } ], "@reverse": { "funder": [ { "@type": "Organization", "@id": "https://doi.org/10.13039/100000104", "name": "National Aeronautics and Space Administration", "alternateName": "Ground observations of CO2 flux dynamics to support the ACT-America project", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "80nssc20k0923" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100006235", "name": "Lawrence Berkeley National Laboratory", "alternateName": "Platform for Multi-modal, Multi-scale Data Integration for Sustainable Agriculture", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "7540598" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100000199", "name": "U.S. Department of Agriculture ARS", "alternateName": "Quantify Changes in Water Quality and Greenhouse Gas Emissions Due to Innovative Rice Production Practices", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "002803-00001a" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100000199", "name": "U.S. Department of Agriculture ARS", "alternateName": "Energy partitioning, evapotranpiration, and CO2 exchange of the forage component of a silvopasture system", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "002902-00001a" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100000199", "name": "U.S. Department of Agriculture NRCS", "alternateName": "Comparing three water-saving irrigation strategies in production-scale rice fields", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "002483-00001a" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100000201", "name": "U.S. Department of the Interior USGS", "alternateName": "A network of evapotranspiration observation sites to constrain ET estimation methods and water availability models in the Mississippi Alluvial Plain", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "g20ac00448" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100006094", "name": "University of Delaware (subaward from USDA-NIFA)", "alternateName": "Closing the Si cycle in rice agroecosystems to sustainably control arsenic and cadmium uptake by rice grown under alternate wetting and drying (AWD)", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "49553" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100017437", "name": "NASA Headquarters", "alternateName": "A national quantification of methane emissions from rice cultivation in the U.S.: integrating multi-source satellite data and process-based modeling" }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100000084", "name": "Directorate for Engineering", "alternateName": "CAREER: Developing climate-smart irrigation strategies for rice agriculture in Arkansas", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "1752083" } } ], "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41598-024-64616-1", "name": "Belowground plant allocation regulates rice methane emissions from degraded peat soils", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-024-64616-1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2024gh001081", "name": "Mitigating Toxic Metal Exposure Through Leafy Greens: A Comprehensive Review Contrasting Cadmium and Lead in Spinach", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2024gh001081" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2024.110069", "name": "The effects of alternate wetting and drying irrigation on water use efficiency in Mid-South rice", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2024.110069" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.2318505121", "name": "We need a solid scientific basis for nature-based climate solutions in the United States", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.2318505121" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ad0925", "name": "Assessing the methane mitigation potential of innovative management in US rice production", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ad0925" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.compag.2023.107954", "name": "Deep learning solutions for mapping contour levee rice production systems from very high resolution imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.compag.2023.107954" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2022.113335", "name": "Paddy rice methane emissions across Monsoon Asia", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2022.113335" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jeq2.20444", "name": "Multiyear methane and nitrous oxide emissions in different irrigation management under long\u2010term continuous rice rotation in Arkansas", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jeq2.20444" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1186/s13036-022-00287-8", "name": "Review: biological engineering for nature-based climate solutions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1186/s13036-022-00287-8" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-022-34049-3", "name": "Vegetation type is an important predictor of the arctic summer land surface energy budget", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-022-34049-3" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-19-3863-2022", "name": "Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-19-3863-2022" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10546-022-00703-y", "name": "Modification of a Wavelet-Based Method for Detecting Ebullitive Methane Fluxes in Eddy-Covariance Observations: Application at Two Rice Fields", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10546-022-00703-y" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fpls.2022.716506", "name": "Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fpls.2022.716506" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16156", "name": "Informing Nature\u2010based Climate Solutions for the U.S. with the best\u2010available science", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16156" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jag.2021.102631", "name": "The first fine-resolution mapping of contour-levee irrigation using deep Bi-Stream convolutional neural networks", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jag.2021.102631" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fagro.2021.741557", "name": "Socio-Technical Changes for Sustainable Rice Production: Rice Husk Amendment, Conservation Irrigation, and System Changes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fagro.2021.741557" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021gb006956", "name": "Covariation of Airborne Biogenic Tracers (CO\n 2\n , COS, and CO) Supports Stronger Than Expected Growing Season Photosynthetic Uptake in the Southeastern US", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gb006956" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-13-3607-2021", "name": "FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-13-3607-2021" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1021/acs.est.0c06421", "name": "An Ecosystem-Scale Flux Measurement Strategy to Assess Natural Climate Solutions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.0c06421" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102965345" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020ea001554", "name": "Rice Inundation Assessment Using Polarimetric UAVSAR Data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020ea001554" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103291455" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2020.112180", "name": "Cropland mapping with L-band UAVSAR and development of NISAR products", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097056723" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2020.112180" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jg006148", "name": "Once Upon a Time, in AmeriFlux", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jg006148" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85099968437" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jclepro.2021.128135", "name": "Environmental sustainability assessment of rice management practices using decision support tools", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85109837876" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jclepro.2021.128135" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2021.108528", "name": "Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2021.108528" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85109612362" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15661", "name": "Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85106753544" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15661" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2021.126080", "name": "Impacts of alternate wetting and drying and delayed flood rice irrigation on growing season evapotranspiration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2021.126080" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102408086" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-021-22452-1", "name": "Substantial hysteresis in emergent temperature sensitivity of global wetland CH<inf>4</inf> emissions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85104390097" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-021-22452-1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/abab34", "name": "The biophysical climate mitigation potential of boreal peatlands during the growing season", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/abab34" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85094183844" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su12176822", "name": "Simulating Soybean\u2013Rice Rotation and Irrigation Strategies in Arkansas, USA Using APEX", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85090598477" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su12176822" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2020.124917", "name": "A new free-convection form to estimate sensible heat and latent heat fluxes for unstable cases", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2020.124917" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85082804005" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-020-0763-7", "name": "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-020-0763-7" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85084517478" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10546-020-00520-1", "name": "Friction-Velocity Estimates Using the Trace of a Scalar and the Mean Wind Speed", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85082818803" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10546-020-00520-1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agee.2019.106813", "name": "Eddy covariance measurements of carbon dioxide and water fluxes in US mid-south cotton production", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077457606" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agee.2019.106813" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu2020-11643", "name": "Greenhouse gas emissions mitigation with alternate wetting and drying irrigation of rice agriculture", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu2020-11643" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu2020-8991", "name": "Lateral carbon export from polygonal tundra catchments on Samoylov Island, Lena River Delta", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu2020-8991" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/bams-d-18-0268.1", "name": "FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/bams-d-18-0268.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071603836" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2019.107763", "name": "Surface renewal measurements of H, \u03bbE and CO2 fluxes over two different agricultural systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85072509998" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2019.107763" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2019.124030", "name": "Evaluating closed chamber evapotranspiration estimates against eddy covariance measurements in an arctic wetland", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2019.124030" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071691183" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2019.1601286", "name": "Automated mapping of rice fields using multi-year training sample normalization", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2019.1601286" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064681827" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-11-221-2019", "name": "A long-term (2002 to 2017) record of closed-path and open-path eddy covariance CO<sub>2</sub> net ecosystem exchange fluxes from the Siberian Arctic", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-11-221-2019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85061915192" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1021/acs.est.8b05535", "name": "Methane Emission Reductions from the Alternate Wetting and Drying of Rice Fields Detected Using the Eddy Covariance Method", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.8b05535" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85059653285" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10500294.1", "name": "User-friendly Greehouse Gas calculators to assess water-saving practices in rice fields in Arkansas", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10500294.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2134/jeq2017.11.0445", "name": "Greenhouse Gas Emissions and Management Practices that Affect Emissions in US Rice Systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85046758409" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2134/jeq2017.11.0445" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-14-3715-2017", "name": "Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-14-3715-2017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85027332740" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2134/ael2017.01.0003", "name": "Delta-Flux: An Eddy Covariance Network for a Climate-Smart Lower Mississippi Basin", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2134/ael2017.01.0003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85063155251" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.10710", "name": "Dissolved organic matter dynamics during the spring snowmelt at a boreal river valley mire complex in Northwest Russia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949976831" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.10710" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-9-915-2016", "name": "Upscaling methane emission hotspots in boreal peatlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84960105245" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-9-915-2016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-3-319-26866-8_2", "name": "Sustainable internationalization? Measuring the diversity of internationalization at higher education institutions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-319-26866-8_2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071466398" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-12-5689-2015", "name": "Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-12-5689-2015" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84943749205" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2014.05.060", "name": "Application of high-resolution spectral absorbance measurements to determine dissolved organic carbon concentration in remote areas", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2014.05.060" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84904861600" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/9/4/045008", "name": "Seasonal variability as a source of uncertainty in the West Siberian regional CH<inf>4</inf> flux upscaling", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84928096296" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/9/4/045008" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s13157-014-0576-4", "name": "Spatial Variations in Pore-Water Biogeochemistry Greatly Exceed Temporal Changes During Baseflow Conditions in a Boreal River Valley Mire Complex, Northwest Russia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906029031" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s13157-014-0576-4" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2014.01.056", "name": "The surface energy balance and its drivers in a boreal peatland fen of northwestern Russia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2014.01.056" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894283084" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-10-1337-2013", "name": "Bulk partitioning the growing season net ecosystem exchange of CO <inf>2</inf> in Siberian tundra reveals the seasonality of it carbon sequestration strength", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-10-1337-2013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883330279" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10040-012-0933-4", "name": "Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia),Variabilit\u00e9 saisonni\u00e8re et spatiale du bilan d'eau de la toundra polygonale: Delta de la rivi\u00e8re Lena, Nord Sib\u00e9rien (Russie)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10040-012-0933-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873516292" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10546-011-9689-y", "name": "Attenuation Correction Procedures for Water Vapour Fluxes from Closed-Path Eddy-Covariance Systems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84856385717" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10546-011-9689-y" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010jg001522", "name": "Carbon dioxide exchange of a pepperweed (Lepidium latifolium L.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79952285021" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010jg001522" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2011.02.011", "name": "Tracking the structural and functional development of a perennial pepperweed (Lepidium latifolium L.) infestation using a multi-year archive of webcam imagery and eddy covariance measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2011.02.011" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955638345" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.enpol.2008.06.039", "name": "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.enpol.2008.06.039" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-57149094844" } ] } ] }, "url": [ "https://runkle.uark.edu/", "https://twitter.com/drbenrunkle", "https://scholar.google.com/citations?user=sezexyoaaaa&user=sezexyoaaaaj" ], "identifier": [ { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "24779753600" }, { "@type": "PropertyValue", "propertyID": "Loop profile", "value": "935088" } ] }
}