Item talk:Q44528: Difference between revisions

From geokb
No edit summary
No edit summary
(One intermediate revision by the same user not shown)
Line 1: Line 1:
ORCID:
{
   '@context': http://schema.org
   "USGS Staff Profile": {
  '@id': https://orcid.org/0000-0003-3638-8572
    "_id": "https://www.usgs.gov/staff-profiles/alison-appling",
  '@reverse':
     "item": "https://geokb.wikibase.cloud/entity/Q44528",
     creator:
    "last_update": "2024-05-12T00:00:00Z",
    - '@id': https://doi.org/10.1002/lno.12549
    "previous_address": null,
      '@type': CreativeWork
    "qid": "Q44528",
      identifier:
    "retrieved": "2024-05-12T00:00:00Z",
        '@type': PropertyValue
    "schema": {
        propertyID: doi
      "@context": "https://schema.org",
        value: 10.1002/lno.12549
       "@type": "Person",
      name: Deep learning of estuary salinity dynamics is physically accurate at a
       "affiliation": [],
        fraction of hydrodynamic model computational cost
      "description": [
    - '@id': https://doi.org/10.1038/s44221-024-00202-z
         {
       '@type': CreativeWork
          "@type": "TextObject",
       identifier:
          "abstract": "Data Scientist with the Water Resources Mission Area",
        '@type': PropertyValue
          "additionalType": "short description"
         propertyID: doi
        },
        value: 10.1038/s44221-024-00202-z
        {
      name: Deep learning for water quality
          "@type": "TextObject",
    - '@id': https://doi.org/10.1029/2023wr034420
          "abstract": "Alison Appling, Ph.D., (she/her) is a data scientist and ecologist who applies machine learning and other data-driven methods to predict and understand water resources dynamics.",
      '@type': CreativeWork
          "additionalType": "staff profile page introductory statement"
      identifier:
         },
        '@type': PropertyValue
        {
        propertyID: doi
          "@type": "TextObject",
        value: 10.1029/2023wr034420
          "abstract": "Current RolesProject Manager: Predictive Understanding of Multiscale Processes (PUMP)Task Lead: Advancing Machine Learning and Data Assimilation, within the PUMP ProjectAlison studies the movement of energy, carbon, and nutrients through rivers, lakes, and floodplains to better predict and understand variations in water quality over space and time.As a machine learning modeler and biogeochemist, she seeks modeling advances that bring together scientific knowledge and data-driven models. \u201cProcess-guided deep learning\u201d and \u201cdifferentiable hydrology\u201d are two approaches on which she collaborates.As a data scientist, she conducts analyses in ways that are reproducible, efficient, and transparent, and she has developed tools and workflows to support others in these goals.In her leadership roles, she facilitates fluid skill sharing within teams and communities of practice, challenges individuals to excel in their projects and careers, and coordinates across projects to realize the Water Mission Area\u2019s vision of broadly reusable, integrated tools for predicting water quantity and quality across the nation.Alison is based in State College, PA, and is a member of the Analysis and Prediction Branch in the Integrated Modeling and Prediction Division in the Water Mission Area. She is on the USGS career track called Equipment Development Grade Evaluation (EDGE).",
      name: Identifying Structural Priors in a Hybrid Differentiable Model for Stream
          "additionalType": "personal statement"
         Water Temperature Modeling
        }
    - '@id': https://doi.org/10.1029/2023wr035327
      ],
      '@type': CreativeWork
      "email": "aappling@usgs.gov",
      identifier:
       "hasCredential": [
        '@type': PropertyValue
         {
        propertyID: doi
          "@type": "EducationalOccupationalCredential",
        value: 10.1029/2023wr035327
          "name": "Ph.D. Ecology, 2012. Duke University, Durham, NC. \nConnectivity Drives Function: Carbon and Nitrogen Dynamics in a Floodplain-Aquifer Ecosystem. Advisors: E. S. Bernhardt and R. B. Jackson"
      name: "Train, Inform, Borrow, or Combine? Approaches to Process\u2010Guided\
        },
        \ Deep Learning for Groundwater\u2010Influenced Stream Temperature Prediction"
        {
    - '@id': https://doi.org/10.1038/s43017-023-00450-9
          "@type": "EducationalOccupationalCredential",
      '@type': CreativeWork
          "name": "B.S. Symbolic Systems, 2004. Stanford University, Stanford, CA. \nCoursework in computer science, decision analysis, logic, linguistics, and psychology."
      identifier:
         }
        '@type': PropertyValue
      ],
        propertyID: doi
       "hasOccupation": [
        value: 10.1038/s43017-023-00450-9
         {
      name: Differentiable modelling to unify machine learning and physical models
          "@type": "OrganizationalRole",
        for geosciences
          "affiliatedOrganization": {
    - '@id': https://doi.org/10.1111/1752-1688.13093
            "@type": "Organization",
      '@type': CreativeWork
            "name": "Water Resources Mission Area",
       identifier:
            "url": "https://www.usgs.gov/mission-areas/water-resources"
         '@type': PropertyValue
          },
        propertyID: doi
          "roleName": "Data Scientist",
        value: 10.1111/1752-1688.13093
          "startDate": "2024-05-12T15:43:21.898129"
      name: "Near\u2010term forecasts of stream temperature using deep learning and\
         },
        \ data assimilation in support of management decisions"
        {
    - '@id': https://doi.org/10.1029/2022wr033880
          "@type": "Occupation",
      '@type': CreativeWork
          "additionalType": "self-claimed professional experience",
      identifier:
          "name": "Development Ecologist and Data Scientist, U.S. Geological Survey, 2019-Present"
        '@type': PropertyValue
        },
        propertyID: doi
        {
         value: 10.1029/2022wr033880
          "@type": "Occupation",
       name: 'Stream Temperature Prediction in a Shifting Environment: Explaining the
          "additionalType": "self-claimed professional experience",
         Influence of Deep Learning Architecture'
          "name": "Ecologist, U.S. Geological Survey, 2016-2019"
    - '@id': https://doi.org/10.31223/x5964s
        },
      '@type': CreativeWork
        {
      identifier:
          "@type": "Occupation",
        '@type': PropertyValue
          "additionalType": "self-claimed professional experience",
        propertyID: doi
          "name": "Postdoctoral Fellow, USGS Powell Center and University of Wisconsin-Madison. Mentors: E. H. Stanley, J. S. Read, E. G. Stets, and R. O. Hall, 2015-2016"
        value: 10.31223/x5964s
        },
      name: Machine learning for understanding inland water quantity, quality, and
        {
        ecology
          "@type": "Occupation",
    - '@id': https://doi.org/10.1002/lno.12098
          "additionalType": "self-claimed professional experience",
      '@type': CreativeWork
          "name": "Postdoctoral Associate, University of New Hampshire. Mentor: W. H. McDowell, 2013-2015"
      identifier:
        },
         '@type': PropertyValue
         {
        propertyID: doi
          "@type": "Occupation",
        value: 10.1002/lno.12098
          "additionalType": "self-claimed professional experience",
      name: "Long\u2010term change in metabolism phenology in north temperate lakes"
          "name": "Postdoctoral Associate, Duke University. Mentor: J. B. Heffernan, 2012-2013"
    - '@id': https://doi.org/10.1016/b978-0-12-819166-8.00121-3
         },
      '@type': CreativeWork
         {
      identifier:
          "@type": "Occupation",
        '@type': PropertyValue
          "additionalType": "self-claimed professional experience",
        propertyID: doi
          "name": "Ph.D. Student and Teaching Assistant: Organismal Diversity, Aquatic Field Ecology, and General Microbiology, University Program in Ecology, Duke University, 2006-2012"
        value: 10.1016/b978-0-12-819166-8.00121-3
        },
      name: Machine Learning for Understanding Inland Water Quantity, Quality, and
         {
        Ecology
          "@type": "Occupation",
    - '@id': https://doi.org/10.1002/hyp.14565
          "additionalType": "self-claimed professional experience",
      '@type': CreativeWork
          "name": "Research Technician, Stanford University & Carnegie Institution of Washington, 2004-2006"
      identifier:
        },
        '@type': PropertyValue
         {
        propertyID: doi
          "@type": "Occupation",
        value: 10.1002/hyp.14565
          "additionalType": "self-claimed professional experience",
      name: "Can machine learning accelerate process understanding and decision\u2010\
          "name": "Undergraduate Teaching Assistant: Programming Paradigms and Discrete Mathematics, Computer Science, Stanford University, 2001-2003"
         relevant predictions of river water quality?"
        }
    - '@id': https://doi.org/10.1029/2021wr030138
      ],
      '@type': CreativeWork
      "identifier": [
      identifier:
         {
        '@type': PropertyValue
          "@type": "PropertyValue",
         propertyID: doi
          "propertyID": "GeoKB",
         value: 10.1029/2021wr030138
          "value": "https://geokb.wikibase.cloud/entity/Q44528"
      name: "Multi\u2010Task Deep Learning of Daily Streamflow and Water Temperature"
        },
    - '@id': https://doi.org/10.1002/hyp.14484
         {
      '@type': CreativeWork
          "@type": "PropertyValue",
      identifier:
          "propertyID": "ORCID",
         '@type': PropertyValue
          "value": "0000-0003-3638-8572"
        propertyID: doi
         }
        value: 10.1002/hyp.14484
      ],
      name: "Long\u2010term suspended sediment and particulate organic carbon yields\
      "jobTitle": "Data Scientist",
         \ from the Reynolds Creek Experimental Watershed and Critical Zone Observatory"
       "knowsAbout": [
    - '@id': https://doi.org/10.1002/essoar.10509644.1
         {
      '@type': CreativeWork
          "@type": "Thing",
      identifier:
          "additionalType": "self-claimed expertise",
         '@type': PropertyValue
          "name": "Data science"
        propertyID: doi
        },
        value: 10.1002/essoar.10509644.1
         {
      name: Process learning of stream temperature modelling using deep learning and
          "@type": "Thing",
         big data
          "additionalType": "self-claimed expertise",
    - '@id': https://doi.org/10.1002/hyp.14400
          "name": "Ecology"
      '@type': CreativeWork
        },
      identifier:
         {
         '@type': PropertyValue
          "@type": "Thing",
        propertyID: doi
          "additionalType": "self-claimed expertise",
        value: 10.1002/hyp.14400
          "name": "Biogeochemistry"
       name: "Deep learning approaches for improving prediction of daily stream temperature\
        },
         \ in data\u2010scarce, unmonitored, and dammed basins"
         {
    - '@id': https://doi.org/10.31223/x55k7g
          "@type": "Thing",
      '@type': CreativeWork
          "additionalType": "self-claimed expertise",
      identifier:
          "name": "Rivers and streams"
         '@type': PropertyValue
        },
        propertyID: doi
         {
        value: 10.31223/x55k7g
          "@type": "Thing",
      name: Near-term forecasts of stream temperature using process-guided deep learning
          "additionalType": "self-claimed expertise",
         and data assimilation
          "name": "Machine learning"
    - '@id': https://doi.org/10.1029/2021wr029579
         },
      '@type': CreativeWork
        {
      identifier:
          "@type": "Thing",
         '@type': PropertyValue
          "additionalType": "self-claimed expertise",
        propertyID: doi
          "name": "Modeling"
        value: 10.1029/2021wr029579
         }
      name: "Predicting Water Temperature Dynamics of Unmonitored Lakes With Meta\u2010\
      ],
         Transfer Learning"
       "memberOf": {
    - '@id': https://doi.org/10.31223/x5004x
        "@type": "OrganizationalRole",
      '@type': CreativeWork
        "member": {
      identifier:
          "@type": "Organization",
         '@type': PropertyValue
          "name": "U.S. Geological Survey"
        propertyID: doi
         },
         value: 10.31223/x5004x
         "name": "staff member",
       name: Multi-task deep learning of daily streamflow and water temperature
         "startDate": "2024-05-12T15:43:21.895471"
    - '@id': https://doi.org/10.1088/1748-9326/abd501
      },
      '@type': CreativeWork
       "name": "Alison Appling, PhD",
      identifier:
      "url": "https://www.usgs.gov/staff-profiles/alison-appling"
         '@type': PropertyValue
    },
         propertyID: doi
    "status_code": "200"
         value: 10.1088/1748-9326/abd501
  },
       name: Exploring the exceptional performance of a deep learning stream temperature
  "ORCID": {
        model and the value of streamflow data
     "@context": "http://schema.org",
    - '@id': https://doi.org/10.1029/2019wr024883
    "@id": "https://orcid.org/0000-0003-3638-8572",
      '@type': CreativeWork
    "@reverse": {
      identifier:
       "creator": [
        '@type': PropertyValue
         {
        propertyID: doi
          "@id": "https://doi.org/10.1002/lno.12549",
        value: 10.1029/2019wr024883
          "@type": "CreativeWork",
      name: 'AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland
          "identifier": {
        Waters'
            "@type": "PropertyValue",
     - '@id': https://doi.org/10.1029/2019wr024922
            "propertyID": "doi",
      '@type': CreativeWork
            "value": "10.1002/lno.12549"
       identifier:
          },
         '@type': PropertyValue
          "name": "Deep learning of estuary salinity dynamics is physically accurate at a fraction of hydrodynamic model computational cost"
        propertyID: doi
         },
        value: 10.1029/2019wr024922
        {
      name: "Process\u2010Guided Deep Learning Predictions of Lake Water Temperature"
          "@id": "https://doi.org/10.1038/s44221-024-00202-z",
    - '@id': https://doi.org/10.1002/lno.11154
          "@type": "CreativeWork",
      '@type': CreativeWork
          "identifier": {
      identifier:
            "@type": "PropertyValue",
        '@type': PropertyValue
            "propertyID": "doi",
        propertyID: doi
            "value": "10.1038/s44221-024-00202-z"
        value: 10.1002/lno.11154
          },
      name: 'Metabolic rhythms in flowing waters: An approach for classifying river
          "name": "Deep learning for water quality"
         productivity regimes'
        },
    - '@id': https://doi.org/10.1002/lno.11127
         {
      '@type': CreativeWork
          "@id": "https://doi.org/10.1029/2023wr034420",
      identifier:
          "@type": "CreativeWork",
        '@type': PropertyValue
          "identifier": {
        propertyID: doi
            "@type": "PropertyValue",
        value: 10.1002/lno.11127
            "propertyID": "doi",
      name: Enhancement of primary production during drought in a temperate watershed
            "value": "10.1029/2023wr034420"
         is greater in larger rivers than headwater streams
          },
    - '@id': https://doi.org/10.1029/2018gl081166
          "name": "Identifying Structural Priors in a Hybrid Differentiable Model for Stream Water Temperature Modeling"
      '@type': CreativeWork
        },
      identifier:
        {
        '@type': PropertyValue
          "@id": "https://doi.org/10.1029/2023wr035327",
        propertyID: doi
          "@type": "CreativeWork",
        value: 10.1029/2018gl081166
          "identifier": {
      name: "Detecting Signals of Large\u2010Scale Climate Phenomena in Discharge\
            "@type": "PropertyValue",
        \ and Nutrient Loads in the Mississippi\u2010Atchafalaya River Basin"
            "propertyID": "doi",
    - '@id': https://doi.org/10.1038/sdata.2018.292
            "value": "10.1029/2023wr035327"
      '@type': CreativeWork
          },
      identifier:
          "name": "Train, Inform, Borrow, or Combine? Approaches to Process\u2010Guided Deep Learning for Groundwater\u2010Influenced Stream Temperature Prediction"
        '@type': PropertyValue
        },
        propertyID: doi
        {
        value: 10.1038/sdata.2018.292
          "@id": "https://doi.org/10.1038/s43017-023-00450-9",
      name: The metabolic regimes of 356 rivers in the United States
          "@type": "CreativeWork",
    - '@id': https://doi.org/10.1002/2017jg004140
          "identifier": {
      '@type': CreativeWork
            "@type": "PropertyValue",
      identifier:
            "propertyID": "doi",
        '@type': PropertyValue
            "value": "10.1038/s43017-023-00450-9"
        propertyID: doi
          },
        value: 10.1002/2017jg004140
          "name": "Differentiable modelling to unify machine learning and physical models for geosciences"
      name: 'Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism
        },
         Estimation'
         {
    - '@id': https://doi.org/10.1002/lno.10726
          "@id": "https://doi.org/10.1111/1752-1688.13093",
      '@type': CreativeWork
          "@type": "CreativeWork",
      identifier:
          "identifier": {
        '@type': PropertyValue
            "@type": "PropertyValue",
        propertyID: doi
            "propertyID": "doi",
        value: 10.1002/lno.10726
            "value": "10.1111/1752-1688.13093"
      name: The metabolic regimes of flowing waters
          },
    - '@type': CreativeWork
          "name": "Near\u2010term forecasts of stream temperature using deep learning and data assimilation in support of management decisions"
      identifier:
        },
        '@type': PropertyValue
        {
        propertyID: issn
          "@id": "https://doi.org/10.1029/2022wr033880",
        value: 2073-4859
          "@type": "CreativeWork",
      name: 'sbtools: A Package Connecting R to Cloud-based Data for Collaborative
          "identifier": {
        Online Research'
            "@type": "PropertyValue",
      sameAs: https://portal.issn.org/resource/ISSN/2073-4859
            "propertyID": "doi",
    - '@id': https://doi.org/10.1111/ecog.01880
            "value": "10.1029/2022wr033880"
      '@type': CreativeWork
          },
      identifier:
          "name": "Stream Temperature Prediction in a Shifting Environment: Explaining the Influence of Deep Learning Architecture"
        '@type': PropertyValue
        },
        propertyID: doi
        {
        value: 10.1111/ecog.01880
          "@id": "https://doi.org/10.31223/x5964s",
      name: 'geoknife: reproducible web-processing of large gridded datasets'
          "@type": "CreativeWork",
    - '@id': https://doi.org/10.1111/oik.02385
          "identifier": {
      '@type': CreativeWork
            "@type": "PropertyValue",
      identifier:
            "propertyID": "doi",
        '@type': PropertyValue
            "value": "10.31223/x5964s"
        propertyID: doi
          },
        value: 10.1111/oik.02385
          "name": "Machine learning for understanding inland water quantity, quality, and ecology"
      name: Stoichiometric flexibility in response to fertilization along gradients
         },
         of environmental and organismal nutrient richness
        {
    - '@id': https://doi.org/10.1890/es14-00517.1
          "@id": "https://doi.org/10.1002/lno.12098",
      '@type': CreativeWork
          "@type": "CreativeWork",
      identifier:
          "identifier": {
        '@type': PropertyValue
            "@type": "PropertyValue",
        propertyID: doi
            "propertyID": "doi",
        value: 10.1890/es14-00517.1
            "value": "10.1002/lno.12098"
      name: 'Reducing bias and quantifying uncertainty in watershed flux estimates:
          },
         the R package loadflex'
          "name": "Long\u2010term change in metabolism phenology in north temperate lakes"
    - '@id': https://doi.org/10.1086/677282
        },
      '@type': CreativeWork
         {
      identifier:
          "@id": "https://doi.org/10.1016/b978-0-12-819166-8.00121-3",
        '@type': PropertyValue
          "@type": "CreativeWork",
        propertyID: doi
          "identifier": {
        value: 10.1086/677282
            "@type": "PropertyValue",
      name: Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling
            "propertyID": "doi",
         of Biogeochemical Cycles
            "value": "10.1016/b978-0-12-819166-8.00121-3"
    - '@id': https://doi.org/10.1002/2013jg002543
          },
      '@type': CreativeWork
          "name": "Machine Learning for Understanding Inland Water Quantity, Quality, and Ecology"
      identifier:
        },
        '@type': PropertyValue
         {
        propertyID: doi
          "@id": "https://doi.org/10.1002/hyp.14565",
        value: 10.1002/2013jg002543
          "@type": "CreativeWork",
      name: 'Floodplain biogeochemical mosaics: A multidimensional view of alluvial
          "identifier": {
         soils'
            "@type": "PropertyValue",
  '@type': Person
            "propertyID": "doi",
  affiliation:
            "value": "10.1002/hyp.14565"
  - '@id': https://doi.org/10.13039/100000203
          },
    '@type': Organization
          "name": "Can machine learning accelerate process understanding and decision\u2010relevant predictions of river water quality?"
    alternateName: Analysis & Prediction Branch, Integrated Modeling and Prediction
         },
      Division
        {
    name: U.S. Geological Survey
          "@id": "https://doi.org/10.1029/2021wr030138",
  - '@type': Organization
          "@type": "CreativeWork",
    alternateName: Data Science Branch, Integrated Information Dissemination Division
          "identifier": {
    identifier:
            "@type": "PropertyValue",
      '@type': PropertyValue
            "propertyID": "doi",
      propertyID: RINGGOLD
            "value": "10.1029/2021wr030138"
      value: '2928'
          },
    name: US Geological Survey
          "name": "Multi\u2010Task Deep Learning of Daily Streamflow and Water Temperature"
  - '@type': Organization
        },
    alternateName: Office of Water Information
        {
    identifier:
          "@id": "https://doi.org/10.1002/hyp.14484",
      '@type': PropertyValue
          "@type": "CreativeWork",
      propertyID: RINGGOLD
          "identifier": {
      value: '2928'
            "@type": "PropertyValue",
    name: US Geological Survey
            "propertyID": "doi",
  - '@type': Organization
            "value": "10.1002/hyp.14484"
    alternateName: Center for Freshwater Limnology
          },
    identifier:
          "name": "Long\u2010term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory"
      '@type': PropertyValue
        },
      propertyID: RINGGOLD
        {
      value: '5228'
          "@id": "https://doi.org/10.1002/essoar.10509644.1",
    name: University of Wisconsin Madison
          "@type": "CreativeWork",
  - '@type': Organization
          "identifier": {
    alternateName: Natural Resources and the Environment
            "@type": "PropertyValue",
    identifier:
            "propertyID": "doi",
      '@type': PropertyValue
            "value": "10.1002/essoar.10509644.1"
      propertyID: RINGGOLD
          },
      value: '3067'
          "name": "Process learning of stream temperature modelling using deep learning and big data"
    name: University of New Hampshire
        },
  - '@type': Organization
        {
    alternateName: Nicholas School of the Environment
          "@id": "https://doi.org/10.1002/hyp.14400",
    identifier:
          "@type": "CreativeWork",
      '@type': PropertyValue
          "identifier": {
      propertyID: RINGGOLD
            "@type": "PropertyValue",
      value: '3065'
            "propertyID": "doi",
    name: Duke University
            "value": "10.1002/hyp.14400"
  alumniOf:
          },
    '@type': Organization
          "name": "Deep learning approaches for improving prediction of daily stream temperature in data\u2010scarce, unmonitored, and dammed basins"
    alternateName: University Program in Ecology
        },
    identifier:
        {
      '@type': PropertyValue
          "@id": "https://doi.org/10.31223/x55k7g",
      propertyID: RINGGOLD
          "@type": "CreativeWork",
      value: '3065'
          "identifier": {
    name: Duke University
            "@type": "PropertyValue",
  familyName: Appling
            "propertyID": "doi",
  givenName: Alison
            "value": "10.31223/x55k7g"
  mainEntityOfPage: https://orcid.org/0000-0003-3638-8572
          },
  name: Alison P. Appling
          "name": "Near-term forecasts of stream temperature using process-guided deep learning and data assimilation"
  url: https://www.usgs.gov/staff-profiles/alison-appling
        },
USGS Staff Profile:
        {
  '@context': https://schema.org
          "@id": "https://doi.org/10.1029/2021wr029579",
  '@type': Person
          "@type": "CreativeWork",
  affiliation: []
          "identifier": {
  description:
            "@type": "PropertyValue",
  - '@type': TextObject
            "propertyID": "doi",
    abstract: Data Scientist with the Water Resources Mission Area
            "value": "10.1029/2021wr029579"
    additionalType: short description
          },
  - '@type': TextObject
          "name": "Predicting Water Temperature Dynamics of Unmonitored Lakes With Meta\u2010Transfer Learning"
    abstract: Alison Appling, Ph.D., (she/her) is a data scientist and ecologist who
        },
      applies machine learning and other data-driven methods to predict and understand
        {
      water resources dynamics.
          "@id": "https://doi.org/10.31223/x5004x",
    additionalType: staff profile page introductory statement
          "@type": "CreativeWork",
  - '@type': TextObject
          "identifier": {
    abstract: "Current RolesProject Manager: Predictive Understanding of Multiscale\
            "@type": "PropertyValue",
      \ Processes (PUMP)Task Lead: Advancing Machine Learning and Data Assimilation,\
            "propertyID": "doi",
      \ within the PUMP ProjectAlison studies the movement of energy, carbon, and\
            "value": "10.31223/x5004x"
      \ nutrients through rivers, lakes, and floodplains to better predict and understand\
          },
      \ variations in water quality over space and time.As a machine learning modeler\
          "name": "Multi-task deep learning of daily streamflow and water temperature"
      \ and biogeochemist, she seeks modeling advances that bring together scientific\
        },
      \ knowledge and data-driven models. \u201CProcess-guided deep learning\u201D\
        {
      \ and \u201Cdifferentiable hydrology\u201D are two approaches on which she collaborates.As\
          "@id": "https://doi.org/10.1088/1748-9326/abd501",
      \ a data scientist, she conducts analyses in ways that are reproducible, efficient,\
          "@type": "CreativeWork",
      \ and transparent, and she has developed tools and workflows to support others\
          "identifier": {
      \ in these goals.In her leadership roles, she facilitates fluid skill sharing\
            "@type": "PropertyValue",
      \ within teams and communities of practice, challenges individuals to excel\
            "propertyID": "doi",
      \ in their projects and careers, and coordinates across projects to realize\
            "value": "10.1088/1748-9326/abd501"
      \ the Water Mission Area\u2019s vision of broadly reusable, integrated tools\
          },
      \ for predicting water quantity and quality across the nation.Alison is based\
          "name": "Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data"
      \ in State College, PA, and is a member of the Analysis and Prediction Branch\
        },
      \ in the Integrated Modeling and Prediction Division in the Water Mission Area.\
        {
      \ She is on the USGS career track called Equipment Development Grade Evaluation\
          "@id": "https://doi.org/10.1029/2019wr024883",
      \ (EDGE)."
          "@type": "CreativeWork",
    additionalType: personal statement
          "identifier": {
  email: aappling@usgs.gov
            "@type": "PropertyValue",
  hasCredential:
            "propertyID": "doi",
  - '@type': EducationalOccupationalCredential
            "value": "10.1029/2019wr024883"
    name: "Ph.D. Ecology, 2012. Duke University, Durham, NC. \nConnectivity Drives\
          },
      \ Function: Carbon and Nitrogen Dynamics in a Floodplain-Aquifer Ecosystem.\
          "name": "AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters"
      \ Advisors: E. S. Bernhardt and R. B. Jackson"
        },
  - '@type': EducationalOccupationalCredential
        {
    name: "B.S. Symbolic Systems, 2004. Stanford University, Stanford, CA. \nCoursework\
          "@id": "https://doi.org/10.1029/2019wr024922",
      \ in computer science, decision analysis, logic, linguistics, and psychology."
          "@type": "CreativeWork",
  hasOccupation:
          "identifier": {
  - '@type': OrganizationalRole
            "@type": "PropertyValue",
    affiliatedOrganization:
            "propertyID": "doi",
      '@type': Organization
            "value": "10.1029/2019wr024922"
      name: Water Resources Mission Area
          },
      url: https://www.usgs.gov/mission-areas/water-resources
          "name": "Process\u2010Guided Deep Learning Predictions of Lake Water Temperature"
    roleName: Data Scientist
        },
    startDate: '2024-05-12T15:43:21.898129'
        {
  - '@type': Occupation
          "@id": "https://doi.org/10.1002/lno.11154",
    additionalType: self-claimed professional experience
          "@type": "CreativeWork",
    name: Development Ecologist and Data Scientist, U.S. Geological Survey, 2019-Present
          "identifier": {
  - '@type': Occupation
            "@type": "PropertyValue",
    additionalType: self-claimed professional experience
            "propertyID": "doi",
    name: Ecologist, U.S. Geological Survey, 2016-2019
            "value": "10.1002/lno.11154"
  - '@type': Occupation
          },
    additionalType: self-claimed professional experience
          "name": "Metabolic rhythms in flowing waters: An approach for classifying river productivity regimes"
    name: 'Postdoctoral Fellow, USGS Powell Center and University of Wisconsin-Madison.
        },
      Mentors: E. H. Stanley, J. S. Read, E. G. Stets, and R. O. Hall, 2015-2016'
        {
  - '@type': Occupation
          "@id": "https://doi.org/10.1002/lno.11127",
    additionalType: self-claimed professional experience
          "@type": "CreativeWork",
    name: 'Postdoctoral Associate, University of New Hampshire. Mentor: W. H. McDowell,
          "identifier": {
      2013-2015'
            "@type": "PropertyValue",
  - '@type': Occupation
            "propertyID": "doi",
    additionalType: self-claimed professional experience
            "value": "10.1002/lno.11127"
    name: 'Postdoctoral Associate, Duke University. Mentor: J. B. Heffernan, 2012-2013'
          },
  - '@type': Occupation
          "name": "Enhancement of primary production during drought in a temperate watershed is greater in larger rivers than headwater streams"
    additionalType: self-claimed professional experience
        },
    name: 'Ph.D. Student and Teaching Assistant: Organismal Diversity, Aquatic Field
        {
      Ecology, and General Microbiology, University Program in Ecology, Duke University,
          "@id": "https://doi.org/10.1029/2018gl081166",
      2006-2012'
          "@type": "CreativeWork",
  - '@type': Occupation
          "identifier": {
    additionalType: self-claimed professional experience
            "@type": "PropertyValue",
    name: Research Technician, Stanford University & Carnegie Institution of Washington,
            "propertyID": "doi",
      2004-2006
            "value": "10.1029/2018gl081166"
  - '@type': Occupation
          },
    additionalType: self-claimed professional experience
          "name": "Detecting Signals of Large\u2010Scale Climate Phenomena in Discharge and Nutrient Loads in the Mississippi\u2010Atchafalaya River Basin"
    name: 'Undergraduate Teaching Assistant: Programming Paradigms and Discrete Mathematics,
        },
      Computer Science, Stanford University, 2001-2003'
        {
  identifier:
          "@id": "https://doi.org/10.1038/sdata.2018.292",
  - '@type': PropertyValue
          "@type": "CreativeWork",
    propertyID: GeoKB
          "identifier": {
    value: https://geokb.wikibase.cloud/entity/Q44528
            "@type": "PropertyValue",
  - '@type': PropertyValue
            "propertyID": "doi",
    propertyID: ORCID
            "value": "10.1038/sdata.2018.292"
    value: 0000-0003-3638-8572
          },
  jobTitle: Data Scientist
          "name": "The metabolic regimes of 356 rivers in the United States"
  knowsAbout:
        },
  - '@type': Thing
        {
    additionalType: self-claimed expertise
          "@id": "https://doi.org/10.1002/2017jg004140",
    name: Data science
          "@type": "CreativeWork",
  - '@type': Thing
          "identifier": {
    additionalType: self-claimed expertise
            "@type": "PropertyValue",
    name: Ecology
            "propertyID": "doi",
  - '@type': Thing
            "value": "10.1002/2017jg004140"
    additionalType: self-claimed expertise
          },
    name: Biogeochemistry
          "name": "Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism Estimation"
  - '@type': Thing
        },
    additionalType: self-claimed expertise
        {
    name: Rivers and streams
          "@id": "https://doi.org/10.1002/lno.10726",
  - '@type': Thing
          "@type": "CreativeWork",
    additionalType: self-claimed expertise
          "identifier": {
    name: Machine learning
            "@type": "PropertyValue",
  - '@type': Thing
            "propertyID": "doi",
    additionalType: self-claimed expertise
            "value": "10.1002/lno.10726"
    name: Modeling
          },
  memberOf:
          "name": "The metabolic regimes of flowing waters"
    '@type': OrganizationalRole
        },
    member:
        {
      '@type': Organization
          "@type": "CreativeWork",
      name: U.S. Geological Survey
          "identifier": {
    name: staff member
            "@type": "PropertyValue",
    startDate: '2024-05-12T15:43:21.895471'
            "propertyID": "issn",
   name: Alison Appling, PhD
            "value": "2073-4859"
  url: https://www.usgs.gov/staff-profiles/alison-appling
          },
          "name": "sbtools: A Package Connecting R to Cloud-based Data for Collaborative Online Research",
          "sameAs": "https://portal.issn.org/resource/ISSN/2073-4859"
        },
        {
          "@id": "https://doi.org/10.1111/ecog.01880",
          "@type": "CreativeWork",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1111/ecog.01880"
          },
          "name": "geoknife: reproducible web-processing of large gridded datasets"
        },
        {
          "@id": "https://doi.org/10.1111/oik.02385",
          "@type": "CreativeWork",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1111/oik.02385"
          },
          "name": "Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness"
        },
        {
          "@id": "https://doi.org/10.1890/es14-00517.1",
          "@type": "CreativeWork",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1890/es14-00517.1"
          },
          "name": "Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex"
        },
        {
          "@id": "https://doi.org/10.1086/677282",
          "@type": "CreativeWork",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1086/677282"
          },
          "name": "Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles"
        },
        {
          "@id": "https://doi.org/10.1002/2013jg002543",
          "@type": "CreativeWork",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1002/2013jg002543"
          },
          "name": "Floodplain biogeochemical mosaics: A multidimensional view of alluvial soils"
        }
      ]
    },
    "@type": "Person",
    "affiliation": [
      {
        "@id": "https://doi.org/10.13039/100000203",
        "@type": "Organization",
        "alternateName": "Analysis & Prediction Branch, Integrated Modeling and Prediction Division",
        "name": "U.S. Geological Survey"
      },
      {
        "@type": "Organization",
        "alternateName": "Data Science Branch, Integrated Information Dissemination Division",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "RINGGOLD",
          "value": "2928"
        },
        "name": "US Geological Survey"
      },
      {
        "@type": "Organization",
        "alternateName": "Office of Water Information",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "RINGGOLD",
          "value": "2928"
        },
        "name": "US Geological Survey"
      },
      {
        "@type": "Organization",
        "alternateName": "Center for Freshwater Limnology",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "RINGGOLD",
          "value": "5228"
        },
        "name": "University of Wisconsin Madison"
      },
      {
        "@type": "Organization",
        "alternateName": "Natural Resources and the Environment",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "RINGGOLD",
          "value": "3067"
        },
        "name": "University of New Hampshire"
      },
      {
        "@type": "Organization",
        "alternateName": "Nicholas School of the Environment",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "RINGGOLD",
          "value": "3065"
        },
        "name": "Duke University"
      }
    ],
    "alumniOf": {
      "@type": "Organization",
      "alternateName": "University Program in Ecology",
      "identifier": {
        "@type": "PropertyValue",
        "propertyID": "RINGGOLD",
        "value": "3065"
      },
      "name": "Duke University"
    },
    "familyName": "Appling",
    "givenName": "Alison",
    "mainEntityOfPage": "https://orcid.org/0000-0003-3638-8572",
    "name": "Alison P. Appling",
    "url": "https://www.usgs.gov/staff-profiles/alison-appling"
  },
  "OpenAlex": {
    "created_date": "2023-07-21",
    "display_name": "Alison Appling",
    "display_name_alternatives": [
      "Alison Paige Appling",
      "A. P. Appling",
      "Alison Appling",
      "Alison P. Appling",
      "A. Appling"
    ],
    "ids": {
      "openalex": "https://openalex.org/A5064758683",
      "orcid": "https://orcid.org/0000-0003-3638-8572"
    },
    "last_known_institutions": [
      {
        "country_code": "US",
        "display_name": "United States Geological Survey",
        "id": "https://openalex.org/I1286329397",
        "lineage": [
          "https://openalex.org/I1286329397",
          "https://openalex.org/I1335927249"
        ],
        "ror": "https://ror.org/035a68863",
        "type": "government"
      }
    ],
    "orcid": "https://orcid.org/0000-0003-3638-8572",
    "topics": [
      {
        "count": 41,
        "display_name": "Hydrological Modeling using Machine Learning Methods",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T11490",
        "subfield": {
          "display_name": "Environmental Engineering",
          "id": "https://openalex.org/subfields/2305"
        }
      },
      {
        "count": 38,
        "display_name": "Hydrological Modeling and Water Resource Management",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T10330",
        "subfield": {
          "display_name": "Water Science and Technology",
          "id": "https://openalex.org/subfields/2312"
        }
      },
      {
        "count": 23,
        "display_name": "Importance and Conservation of Freshwater Biodiversity",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T10302",
        "subfield": {
          "display_name": "Nature and Landscape Conservation",
          "id": "https://openalex.org/subfields/2309"
        }
      },
      {
        "count": 10,
        "display_name": "Global Flood Risk Assessment and Management",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T10930",
        "subfield": {
          "display_name": "Global and Planetary Change",
          "id": "https://openalex.org/subfields/2306"
        }
      },
      {
        "count": 9,
        "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T11311",
        "subfield": {
          "display_name": "Environmental Chemistry",
          "id": "https://openalex.org/subfields/2304"
        }
      },
      {
        "count": 8,
        "display_name": "Real-time Water Quality Monitoring and Aquaculture Management",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T12697",
        "subfield": {
          "display_name": "Water Science and Technology",
          "id": "https://openalex.org/subfields/2312"
        }
      },
      {
        "count": 8,
        "display_name": "Advanced Techniques in Reservoir Management",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Engineering",
          "id": "https://openalex.org/fields/22"
        },
        "id": "https://openalex.org/T11801",
        "subfield": {
          "display_name": "Ocean Engineering",
          "id": "https://openalex.org/subfields/2212"
        }
      },
      {
        "count": 8,
        "display_name": "Physics-Informed Neural Networks for Scientific Computing",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Physics and Astronomy",
          "id": "https://openalex.org/fields/31"
        },
        "id": "https://openalex.org/T11206",
        "subfield": {
          "display_name": "Statistical and Nonlinear Physics",
          "id": "https://openalex.org/subfields/3109"
        }
      },
      {
        "count": 6,
        "display_name": "Radiomics in Medical Imaging Analysis",
        "domain": {
          "display_name": "Health Sciences",
          "id": "https://openalex.org/domains/4"
        },
        "field": {
          "display_name": "Medicine",
          "id": "https://openalex.org/fields/27"
        },
        "id": "https://openalex.org/T12422",
        "subfield": {
          "display_name": "Radiology, Nuclear Medicine and Imaging",
          "id": "https://openalex.org/subfields/2741"
        }
      },
      {
        "count": 6,
        "display_name": "Artificial Intelligence in Medicine",
        "domain": {
          "display_name": "Health Sciences",
          "id": "https://openalex.org/domains/4"
        },
        "field": {
          "display_name": "Medicine",
          "id": "https://openalex.org/fields/27"
        },
        "id": "https://openalex.org/T11636",
        "subfield": {
          "display_name": "Health Informatics",
          "id": "https://openalex.org/subfields/2718"
        }
      },
      {
        "count": 6,
        "display_name": "Marine Biogeochemistry and Ecosystem Dynamics",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Earth and Planetary Sciences",
          "id": "https://openalex.org/fields/19"
        },
        "id": "https://openalex.org/T10032",
        "subfield": {
          "display_name": "Oceanography",
          "id": "https://openalex.org/subfields/1910"
        }
      },
      {
        "count": 6,
        "display_name": "Dual-Energy Computed Tomography",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Engineering",
          "id": "https://openalex.org/fields/22"
        },
        "id": "https://openalex.org/T12386",
        "subfield": {
          "display_name": "Biomedical Engineering",
          "id": "https://openalex.org/subfields/2204"
        }
      },
      {
        "count": 5,
        "display_name": "Management and Reproducibility of Scientific Workflows",
        "domain": {
          "display_name": "Social Sciences",
          "id": "https://openalex.org/domains/2"
        },
        "field": {
          "display_name": "Decision Sciences",
          "id": "https://openalex.org/fields/18"
        },
        "id": "https://openalex.org/T11986",
        "subfield": {
          "display_name": "Information Systems and Management",
          "id": "https://openalex.org/subfields/1802"
        }
      },
      {
        "count": 3,
        "display_name": "Scientific Computing and Data Analysis with Python",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Computer Science",
          "id": "https://openalex.org/fields/17"
        },
        "id": "https://openalex.org/T13650",
        "subfield": {
          "display_name": "Artificial Intelligence",
          "id": "https://openalex.org/subfields/1702"
        }
      },
      {
        "count": 3,
        "display_name": "Soil Erosion and Agricultural Sustainability",
        "domain": {
          "display_name": "Life Sciences",
          "id": "https://openalex.org/domains/1"
        },
        "field": {
          "display_name": "Agricultural and Biological Sciences",
          "id": "https://openalex.org/fields/11"
        },
        "id": "https://openalex.org/T10889",
        "subfield": {
          "display_name": "Soil Science",
          "id": "https://openalex.org/subfields/1111"
        }
      },
      {
        "count": 3,
        "display_name": "Global Methane Emissions and Impacts",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T11588",
        "subfield": {
          "display_name": "Global and Planetary Change",
          "id": "https://openalex.org/subfields/2306"
        }
      },
      {
        "count": 3,
        "display_name": "Eutrophication and Harmful Algal Blooms",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T10236",
        "subfield": {
          "display_name": "Environmental Chemistry",
          "id": "https://openalex.org/subfields/2304"
        }
      },
      {
        "count": 3,
        "display_name": "Neural Network Fundamentals and Applications",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Computer Science",
          "id": "https://openalex.org/fields/17"
        },
        "id": "https://openalex.org/T10320",
        "subfield": {
          "display_name": "Artificial Intelligence",
          "id": "https://openalex.org/subfields/1702"
        }
      },
      {
        "count": 3,
        "display_name": "Groundwater Flow and Transport Modeling",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T10894",
        "subfield": {
          "display_name": "Environmental Engineering",
          "id": "https://openalex.org/subfields/2305"
        }
      },
      {
        "count": 2,
        "display_name": "Adaptation to Concept Drift in Data Streams",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Computer Science",
          "id": "https://openalex.org/fields/17"
        },
        "id": "https://openalex.org/T12761",
        "subfield": {
          "display_name": "Artificial Intelligence",
          "id": "https://openalex.org/subfields/1702"
        }
      },
      {
        "count": 2,
        "display_name": "Metabolic Theory of Ecology and Climate Change Impacts",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T11056",
        "subfield": {
          "display_name": "Ecology",
          "id": "https://openalex.org/subfields/2303"
        }
      },
      {
        "count": 2,
        "display_name": "Explainable Artificial Intelligence",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Computer Science",
          "id": "https://openalex.org/fields/17"
        },
        "id": "https://openalex.org/T12026",
        "subfield": {
          "display_name": "Artificial Intelligence",
          "id": "https://openalex.org/subfields/1702"
        }
      },
      {
        "count": 2,
        "display_name": "Impact of Climate Change on Forest Wildfires",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Environmental Science",
          "id": "https://openalex.org/fields/23"
        },
        "id": "https://openalex.org/T10555",
        "subfield": {
          "display_name": "Global and Planetary Change",
          "id": "https://openalex.org/subfields/2306"
        }
      },
      {
        "count": 2,
        "display_name": "Distributed Grid Computing Systems",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Computer Science",
          "id": "https://openalex.org/fields/17"
        },
        "id": "https://openalex.org/T10715",
        "subfield": {
          "display_name": "Computer Networks and Communications",
          "id": "https://openalex.org/subfields/1705"
        }
      },
      {
        "count": 2,
        "display_name": "Machine Learning for Mineral Prospectivity Mapping",
        "domain": {
          "display_name": "Physical Sciences",
          "id": "https://openalex.org/domains/3"
        },
        "field": {
          "display_name": "Computer Science",
          "id": "https://openalex.org/fields/17"
        },
        "id": "https://openalex.org/T12157",
        "subfield": {
          "display_name": "Artificial Intelligence",
          "id": "https://openalex.org/subfields/1702"
        }
      }
    ],
    "updated_date": "2024-05-22T15:49:32.862858"
   }
}

Revision as of 19:25, 30 August 2024

{

 "USGS Staff Profile": {
   "_id": "https://www.usgs.gov/staff-profiles/alison-appling",
   "item": "https://geokb.wikibase.cloud/entity/Q44528",
   "last_update": "2024-05-12T00:00:00Z",
   "previous_address": null,
   "qid": "Q44528",
   "retrieved": "2024-05-12T00:00:00Z",
   "schema": {
     "@context": "https://schema.org",
     "@type": "Person",
     "affiliation": [],
     "description": [
       {
         "@type": "TextObject",
         "abstract": "Data Scientist with the Water Resources Mission Area",
         "additionalType": "short description"
       },
       {
         "@type": "TextObject",
         "abstract": "Alison Appling, Ph.D., (she/her) is a data scientist and ecologist who applies machine learning and other data-driven methods to predict and understand water resources dynamics.",
         "additionalType": "staff profile page introductory statement"
       },
       {
         "@type": "TextObject",
         "abstract": "Current RolesProject Manager: Predictive Understanding of Multiscale Processes (PUMP)Task Lead: Advancing Machine Learning and Data Assimilation, within the PUMP ProjectAlison studies the movement of energy, carbon, and nutrients through rivers, lakes, and floodplains to better predict and understand variations in water quality over space and time.As a machine learning modeler and biogeochemist, she seeks modeling advances that bring together scientific knowledge and data-driven models. \u201cProcess-guided deep learning\u201d and \u201cdifferentiable hydrology\u201d are two approaches on which she collaborates.As a data scientist, she conducts analyses in ways that are reproducible, efficient, and transparent, and she has developed tools and workflows to support others in these goals.In her leadership roles, she facilitates fluid skill sharing within teams and communities of practice, challenges individuals to excel in their projects and careers, and coordinates across projects to realize the Water Mission Area\u2019s vision of broadly reusable, integrated tools for predicting water quantity and quality across the nation.Alison is based in State College, PA, and is a member of the Analysis and Prediction Branch in the Integrated Modeling and Prediction Division in the Water Mission Area. She is on the USGS career track called Equipment Development Grade Evaluation (EDGE).",
         "additionalType": "personal statement"
       }
     ],
     "email": "aappling@usgs.gov",
     "hasCredential": [
       {
         "@type": "EducationalOccupationalCredential",
         "name": "Ph.D. Ecology, 2012. Duke University, Durham, NC. \nConnectivity Drives Function: Carbon and Nitrogen Dynamics in a Floodplain-Aquifer Ecosystem. Advisors: E. S. Bernhardt and R. B. Jackson"
       },
       {
         "@type": "EducationalOccupationalCredential",
         "name": "B.S. Symbolic Systems, 2004. Stanford University, Stanford, CA. \nCoursework in computer science, decision analysis, logic, linguistics, and psychology."
       }
     ],
     "hasOccupation": [
       {
         "@type": "OrganizationalRole",
         "affiliatedOrganization": {
           "@type": "Organization",
           "name": "Water Resources Mission Area",
           "url": "https://www.usgs.gov/mission-areas/water-resources"
         },
         "roleName": "Data Scientist",
         "startDate": "2024-05-12T15:43:21.898129"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Development Ecologist and Data Scientist, U.S. Geological Survey, 2019-Present"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Ecologist, U.S. Geological Survey, 2016-2019"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Postdoctoral Fellow, USGS Powell Center and University of Wisconsin-Madison. Mentors: E. H. Stanley, J. S. Read, E. G. Stets, and R. O. Hall, 2015-2016"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Postdoctoral Associate, University of New Hampshire. Mentor: W. H. McDowell, 2013-2015"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Postdoctoral Associate, Duke University. Mentor: J. B. Heffernan, 2012-2013"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Ph.D. Student and Teaching Assistant: Organismal Diversity, Aquatic Field Ecology, and General Microbiology, University Program in Ecology, Duke University, 2006-2012"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Research Technician, Stanford University & Carnegie Institution of Washington, 2004-2006"
       },
       {
         "@type": "Occupation",
         "additionalType": "self-claimed professional experience",
         "name": "Undergraduate Teaching Assistant: Programming Paradigms and Discrete Mathematics, Computer Science, Stanford University, 2001-2003"
       }
     ],
     "identifier": [
       {
         "@type": "PropertyValue",
         "propertyID": "GeoKB",
         "value": "https://geokb.wikibase.cloud/entity/Q44528"
       },
       {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0003-3638-8572"
       }
     ],
     "jobTitle": "Data Scientist",
     "knowsAbout": [
       {
         "@type": "Thing",
         "additionalType": "self-claimed expertise",
         "name": "Data science"
       },
       {
         "@type": "Thing",
         "additionalType": "self-claimed expertise",
         "name": "Ecology"
       },
       {
         "@type": "Thing",
         "additionalType": "self-claimed expertise",
         "name": "Biogeochemistry"
       },
       {
         "@type": "Thing",
         "additionalType": "self-claimed expertise",
         "name": "Rivers and streams"
       },
       {
         "@type": "Thing",
         "additionalType": "self-claimed expertise",
         "name": "Machine learning"
       },
       {
         "@type": "Thing",
         "additionalType": "self-claimed expertise",
         "name": "Modeling"
       }
     ],
     "memberOf": {
       "@type": "OrganizationalRole",
       "member": {
         "@type": "Organization",
         "name": "U.S. Geological Survey"
       },
       "name": "staff member",
       "startDate": "2024-05-12T15:43:21.895471"
     },
     "name": "Alison Appling, PhD",
     "url": "https://www.usgs.gov/staff-profiles/alison-appling"
   },
   "status_code": "200"
 },
 "ORCID": {
   "@context": "http://schema.org",
   "@id": "https://orcid.org/0000-0003-3638-8572",
   "@reverse": {
     "creator": [
       {
         "@id": "https://doi.org/10.1002/lno.12549",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/lno.12549"
         },
         "name": "Deep learning of estuary salinity dynamics is physically accurate at a fraction of hydrodynamic model computational cost"
       },
       {
         "@id": "https://doi.org/10.1038/s44221-024-00202-z",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1038/s44221-024-00202-z"
         },
         "name": "Deep learning for water quality"
       },
       {
         "@id": "https://doi.org/10.1029/2023wr034420",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2023wr034420"
         },
         "name": "Identifying Structural Priors in a Hybrid Differentiable Model for Stream Water Temperature Modeling"
       },
       {
         "@id": "https://doi.org/10.1029/2023wr035327",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2023wr035327"
         },
         "name": "Train, Inform, Borrow, or Combine? Approaches to Process\u2010Guided Deep Learning for Groundwater\u2010Influenced Stream Temperature Prediction"
       },
       {
         "@id": "https://doi.org/10.1038/s43017-023-00450-9",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1038/s43017-023-00450-9"
         },
         "name": "Differentiable modelling to unify machine learning and physical models for geosciences"
       },
       {
         "@id": "https://doi.org/10.1111/1752-1688.13093",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1111/1752-1688.13093"
         },
         "name": "Near\u2010term forecasts of stream temperature using deep learning and data assimilation in support of management decisions"
       },
       {
         "@id": "https://doi.org/10.1029/2022wr033880",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2022wr033880"
         },
         "name": "Stream Temperature Prediction in a Shifting Environment: Explaining the Influence of Deep Learning Architecture"
       },
       {
         "@id": "https://doi.org/10.31223/x5964s",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.31223/x5964s"
         },
         "name": "Machine learning for understanding inland water quantity, quality, and ecology"
       },
       {
         "@id": "https://doi.org/10.1002/lno.12098",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/lno.12098"
         },
         "name": "Long\u2010term change in metabolism phenology in north temperate lakes"
       },
       {
         "@id": "https://doi.org/10.1016/b978-0-12-819166-8.00121-3",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/b978-0-12-819166-8.00121-3"
         },
         "name": "Machine Learning for Understanding Inland Water Quantity, Quality, and Ecology"
       },
       {
         "@id": "https://doi.org/10.1002/hyp.14565",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/hyp.14565"
         },
         "name": "Can machine learning accelerate process understanding and decision\u2010relevant predictions of river water quality?"
       },
       {
         "@id": "https://doi.org/10.1029/2021wr030138",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2021wr030138"
         },
         "name": "Multi\u2010Task Deep Learning of Daily Streamflow and Water Temperature"
       },
       {
         "@id": "https://doi.org/10.1002/hyp.14484",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/hyp.14484"
         },
         "name": "Long\u2010term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory"
       },
       {
         "@id": "https://doi.org/10.1002/essoar.10509644.1",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/essoar.10509644.1"
         },
         "name": "Process learning of stream temperature modelling using deep learning and big data"
       },
       {
         "@id": "https://doi.org/10.1002/hyp.14400",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/hyp.14400"
         },
         "name": "Deep learning approaches for improving prediction of daily stream temperature in data\u2010scarce, unmonitored, and dammed basins"
       },
       {
         "@id": "https://doi.org/10.31223/x55k7g",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.31223/x55k7g"
         },
         "name": "Near-term forecasts of stream temperature using process-guided deep learning and data assimilation"
       },
       {
         "@id": "https://doi.org/10.1029/2021wr029579",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2021wr029579"
         },
         "name": "Predicting Water Temperature Dynamics of Unmonitored Lakes With Meta\u2010Transfer Learning"
       },
       {
         "@id": "https://doi.org/10.31223/x5004x",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.31223/x5004x"
         },
         "name": "Multi-task deep learning of daily streamflow and water temperature"
       },
       {
         "@id": "https://doi.org/10.1088/1748-9326/abd501",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1088/1748-9326/abd501"
         },
         "name": "Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data"
       },
       {
         "@id": "https://doi.org/10.1029/2019wr024883",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2019wr024883"
         },
         "name": "AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters"
       },
       {
         "@id": "https://doi.org/10.1029/2019wr024922",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2019wr024922"
         },
         "name": "Process\u2010Guided Deep Learning Predictions of Lake Water Temperature"
       },
       {
         "@id": "https://doi.org/10.1002/lno.11154",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/lno.11154"
         },
         "name": "Metabolic rhythms in flowing waters: An approach for classifying river productivity regimes"
       },
       {
         "@id": "https://doi.org/10.1002/lno.11127",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/lno.11127"
         },
         "name": "Enhancement of primary production during drought in a temperate watershed is greater in larger rivers than headwater streams"
       },
       {
         "@id": "https://doi.org/10.1029/2018gl081166",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2018gl081166"
         },
         "name": "Detecting Signals of Large\u2010Scale Climate Phenomena in Discharge and Nutrient Loads in the Mississippi\u2010Atchafalaya River Basin"
       },
       {
         "@id": "https://doi.org/10.1038/sdata.2018.292",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1038/sdata.2018.292"
         },
         "name": "The metabolic regimes of 356 rivers in the United States"
       },
       {
         "@id": "https://doi.org/10.1002/2017jg004140",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/2017jg004140"
         },
         "name": "Overcoming Equifinality: Leveraging Long Time Series for Stream Metabolism Estimation"
       },
       {
         "@id": "https://doi.org/10.1002/lno.10726",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/lno.10726"
         },
         "name": "The metabolic regimes of flowing waters"
       },
       {
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "issn",
           "value": "2073-4859"
         },
         "name": "sbtools: A Package Connecting R to Cloud-based Data for Collaborative Online Research",
         "sameAs": "https://portal.issn.org/resource/ISSN/2073-4859"
       },
       {
         "@id": "https://doi.org/10.1111/ecog.01880",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1111/ecog.01880"
         },
         "name": "geoknife: reproducible web-processing of large gridded datasets"
       },
       {
         "@id": "https://doi.org/10.1111/oik.02385",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1111/oik.02385"
         },
         "name": "Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness"
       },
       {
         "@id": "https://doi.org/10.1890/es14-00517.1",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1890/es14-00517.1"
         },
         "name": "Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex"
       },
       {
         "@id": "https://doi.org/10.1086/677282",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1086/677282"
         },
         "name": "Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles"
       },
       {
         "@id": "https://doi.org/10.1002/2013jg002543",
         "@type": "CreativeWork",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/2013jg002543"
         },
         "name": "Floodplain biogeochemical mosaics: A multidimensional view of alluvial soils"
       }
     ]
   },
   "@type": "Person",
   "affiliation": [
     {
       "@id": "https://doi.org/10.13039/100000203",
       "@type": "Organization",
       "alternateName": "Analysis & Prediction Branch, Integrated Modeling and Prediction Division",
       "name": "U.S. Geological Survey"
     },
     {
       "@type": "Organization",
       "alternateName": "Data Science Branch, Integrated Information Dissemination Division",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "2928"
       },
       "name": "US Geological Survey"
     },
     {
       "@type": "Organization",
       "alternateName": "Office of Water Information",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "2928"
       },
       "name": "US Geological Survey"
     },
     {
       "@type": "Organization",
       "alternateName": "Center for Freshwater Limnology",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "5228"
       },
       "name": "University of Wisconsin Madison"
     },
     {
       "@type": "Organization",
       "alternateName": "Natural Resources and the Environment",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "3067"
       },
       "name": "University of New Hampshire"
     },
     {
       "@type": "Organization",
       "alternateName": "Nicholas School of the Environment",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "3065"
       },
       "name": "Duke University"
     }
   ],
   "alumniOf": {
     "@type": "Organization",
     "alternateName": "University Program in Ecology",
     "identifier": {
       "@type": "PropertyValue",
       "propertyID": "RINGGOLD",
       "value": "3065"
     },
     "name": "Duke University"
   },
   "familyName": "Appling",
   "givenName": "Alison",
   "mainEntityOfPage": "https://orcid.org/0000-0003-3638-8572",
   "name": "Alison P. Appling",
   "url": "https://www.usgs.gov/staff-profiles/alison-appling"
 },
 "OpenAlex": {
   "created_date": "2023-07-21",
   "display_name": "Alison Appling",
   "display_name_alternatives": [
     "Alison Paige Appling",
     "A. P. Appling",
     "Alison Appling",
     "Alison P. Appling",
     "A. Appling"
   ],
   "ids": {
     "openalex": "https://openalex.org/A5064758683",
     "orcid": "https://orcid.org/0000-0003-3638-8572"
   },
   "last_known_institutions": [
     {
       "country_code": "US",
       "display_name": "United States Geological Survey",
       "id": "https://openalex.org/I1286329397",
       "lineage": [
         "https://openalex.org/I1286329397",
         "https://openalex.org/I1335927249"
       ],
       "ror": "https://ror.org/035a68863",
       "type": "government"
     }
   ],
   "orcid": "https://orcid.org/0000-0003-3638-8572",
   "topics": [
     {
       "count": 41,
       "display_name": "Hydrological Modeling using Machine Learning Methods",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T11490",
       "subfield": {
         "display_name": "Environmental Engineering",
         "id": "https://openalex.org/subfields/2305"
       }
     },
     {
       "count": 38,
       "display_name": "Hydrological Modeling and Water Resource Management",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T10330",
       "subfield": {
         "display_name": "Water Science and Technology",
         "id": "https://openalex.org/subfields/2312"
       }
     },
     {
       "count": 23,
       "display_name": "Importance and Conservation of Freshwater Biodiversity",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T10302",
       "subfield": {
         "display_name": "Nature and Landscape Conservation",
         "id": "https://openalex.org/subfields/2309"
       }
     },
     {
       "count": 10,
       "display_name": "Global Flood Risk Assessment and Management",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T10930",
       "subfield": {
         "display_name": "Global and Planetary Change",
         "id": "https://openalex.org/subfields/2306"
       }
     },
     {
       "count": 9,
       "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T11311",
       "subfield": {
         "display_name": "Environmental Chemistry",
         "id": "https://openalex.org/subfields/2304"
       }
     },
     {
       "count": 8,
       "display_name": "Real-time Water Quality Monitoring and Aquaculture Management",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T12697",
       "subfield": {
         "display_name": "Water Science and Technology",
         "id": "https://openalex.org/subfields/2312"
       }
     },
     {
       "count": 8,
       "display_name": "Advanced Techniques in Reservoir Management",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Engineering",
         "id": "https://openalex.org/fields/22"
       },
       "id": "https://openalex.org/T11801",
       "subfield": {
         "display_name": "Ocean Engineering",
         "id": "https://openalex.org/subfields/2212"
       }
     },
     {
       "count": 8,
       "display_name": "Physics-Informed Neural Networks for Scientific Computing",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Physics and Astronomy",
         "id": "https://openalex.org/fields/31"
       },
       "id": "https://openalex.org/T11206",
       "subfield": {
         "display_name": "Statistical and Nonlinear Physics",
         "id": "https://openalex.org/subfields/3109"
       }
     },
     {
       "count": 6,
       "display_name": "Radiomics in Medical Imaging Analysis",
       "domain": {
         "display_name": "Health Sciences",
         "id": "https://openalex.org/domains/4"
       },
       "field": {
         "display_name": "Medicine",
         "id": "https://openalex.org/fields/27"
       },
       "id": "https://openalex.org/T12422",
       "subfield": {
         "display_name": "Radiology, Nuclear Medicine and Imaging",
         "id": "https://openalex.org/subfields/2741"
       }
     },
     {
       "count": 6,
       "display_name": "Artificial Intelligence in Medicine",
       "domain": {
         "display_name": "Health Sciences",
         "id": "https://openalex.org/domains/4"
       },
       "field": {
         "display_name": "Medicine",
         "id": "https://openalex.org/fields/27"
       },
       "id": "https://openalex.org/T11636",
       "subfield": {
         "display_name": "Health Informatics",
         "id": "https://openalex.org/subfields/2718"
       }
     },
     {
       "count": 6,
       "display_name": "Marine Biogeochemistry and Ecosystem Dynamics",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Earth and Planetary Sciences",
         "id": "https://openalex.org/fields/19"
       },
       "id": "https://openalex.org/T10032",
       "subfield": {
         "display_name": "Oceanography",
         "id": "https://openalex.org/subfields/1910"
       }
     },
     {
       "count": 6,
       "display_name": "Dual-Energy Computed Tomography",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Engineering",
         "id": "https://openalex.org/fields/22"
       },
       "id": "https://openalex.org/T12386",
       "subfield": {
         "display_name": "Biomedical Engineering",
         "id": "https://openalex.org/subfields/2204"
       }
     },
     {
       "count": 5,
       "display_name": "Management and Reproducibility of Scientific Workflows",
       "domain": {
         "display_name": "Social Sciences",
         "id": "https://openalex.org/domains/2"
       },
       "field": {
         "display_name": "Decision Sciences",
         "id": "https://openalex.org/fields/18"
       },
       "id": "https://openalex.org/T11986",
       "subfield": {
         "display_name": "Information Systems and Management",
         "id": "https://openalex.org/subfields/1802"
       }
     },
     {
       "count": 3,
       "display_name": "Scientific Computing and Data Analysis with Python",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Computer Science",
         "id": "https://openalex.org/fields/17"
       },
       "id": "https://openalex.org/T13650",
       "subfield": {
         "display_name": "Artificial Intelligence",
         "id": "https://openalex.org/subfields/1702"
       }
     },
     {
       "count": 3,
       "display_name": "Soil Erosion and Agricultural Sustainability",
       "domain": {
         "display_name": "Life Sciences",
         "id": "https://openalex.org/domains/1"
       },
       "field": {
         "display_name": "Agricultural and Biological Sciences",
         "id": "https://openalex.org/fields/11"
       },
       "id": "https://openalex.org/T10889",
       "subfield": {
         "display_name": "Soil Science",
         "id": "https://openalex.org/subfields/1111"
       }
     },
     {
       "count": 3,
       "display_name": "Global Methane Emissions and Impacts",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T11588",
       "subfield": {
         "display_name": "Global and Planetary Change",
         "id": "https://openalex.org/subfields/2306"
       }
     },
     {
       "count": 3,
       "display_name": "Eutrophication and Harmful Algal Blooms",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T10236",
       "subfield": {
         "display_name": "Environmental Chemistry",
         "id": "https://openalex.org/subfields/2304"
       }
     },
     {
       "count": 3,
       "display_name": "Neural Network Fundamentals and Applications",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Computer Science",
         "id": "https://openalex.org/fields/17"
       },
       "id": "https://openalex.org/T10320",
       "subfield": {
         "display_name": "Artificial Intelligence",
         "id": "https://openalex.org/subfields/1702"
       }
     },
     {
       "count": 3,
       "display_name": "Groundwater Flow and Transport Modeling",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T10894",
       "subfield": {
         "display_name": "Environmental Engineering",
         "id": "https://openalex.org/subfields/2305"
       }
     },
     {
       "count": 2,
       "display_name": "Adaptation to Concept Drift in Data Streams",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Computer Science",
         "id": "https://openalex.org/fields/17"
       },
       "id": "https://openalex.org/T12761",
       "subfield": {
         "display_name": "Artificial Intelligence",
         "id": "https://openalex.org/subfields/1702"
       }
     },
     {
       "count": 2,
       "display_name": "Metabolic Theory of Ecology and Climate Change Impacts",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T11056",
       "subfield": {
         "display_name": "Ecology",
         "id": "https://openalex.org/subfields/2303"
       }
     },
     {
       "count": 2,
       "display_name": "Explainable Artificial Intelligence",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Computer Science",
         "id": "https://openalex.org/fields/17"
       },
       "id": "https://openalex.org/T12026",
       "subfield": {
         "display_name": "Artificial Intelligence",
         "id": "https://openalex.org/subfields/1702"
       }
     },
     {
       "count": 2,
       "display_name": "Impact of Climate Change on Forest Wildfires",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Environmental Science",
         "id": "https://openalex.org/fields/23"
       },
       "id": "https://openalex.org/T10555",
       "subfield": {
         "display_name": "Global and Planetary Change",
         "id": "https://openalex.org/subfields/2306"
       }
     },
     {
       "count": 2,
       "display_name": "Distributed Grid Computing Systems",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Computer Science",
         "id": "https://openalex.org/fields/17"
       },
       "id": "https://openalex.org/T10715",
       "subfield": {
         "display_name": "Computer Networks and Communications",
         "id": "https://openalex.org/subfields/1705"
       }
     },
     {
       "count": 2,
       "display_name": "Machine Learning for Mineral Prospectivity Mapping",
       "domain": {
         "display_name": "Physical Sciences",
         "id": "https://openalex.org/domains/3"
       },
       "field": {
         "display_name": "Computer Science",
         "id": "https://openalex.org/fields/17"
       },
       "id": "https://openalex.org/T12157",
       "subfield": {
         "display_name": "Artificial Intelligence",
         "id": "https://openalex.org/subfields/1702"
       }
     }
   ],
   "updated_date": "2024-05-22T15:49:32.862858"
 }

}